Deel 1: Introductie

Stap 1: Teaser

Inleiding.

Korte rondleiding door PyPi snoepwinkel, de “cheese-shop”.
Performance en gebruik van C++ modules.

Stap 2: Wat kun je na deze les

Een module-hiérarchie ontwerpen, met gebruikmaking van abstractie-lagen.

Mutual dependence voorkdmen door gebruik van een base, utils en/of constants module.
Het module-zoekpad programmatisch aanpassen.

Een package samenstellen met gebruikmaking van __init__.py files.

Stap 3: Ophalen benodigde voorkennis

Gezond verstand als bron van voorkennis:
* Van exponentiéle naar lineaire ontwerp-complexiteit (NIET runtime-complexiteit).
* Hoe vermijd ik een spaghetti-ontwerp (NIETspaghetti executie).
* Wenselijkheid relatieve paden bij copy-installation.
» Distributie van een groep samenhangende modules.

Deel 2: Kern

Stap 4: Uitleg van de nieuwe lesstof

Korte samenvatting van de bijbehorende videoles, gelegenheid tot vragen.
Hoe download ik met de -m switch PyPi packages in de juiste Python versie.
Hoe maak ik een package.

Hoe kan ik het package zoekpad vanuit code beinvioeden.

Stap 5: Voorbeelden en vragen door docent

Structuur van SimPyLC met een facade module en relatieve paden.

Faciliteiten in Transcrypt voor uploaden van Transcrypt naar PyPi en voor installatie.
Structuur van een mix tussen Python en C++ modules bij een medical imaging applicatie.
Waarom zou ik Python en C++ wel of niet integreren via bijvoorbeeld Swig?

Stap 6: Oefenen met de nieuwe lesstof

Teken (informeel) een package diagram van een jukebox programma met een main package
dat gebruik maakt van een SQL database package voor metadata en .mp4 package voor
audio, beiden met gebaseerd op hetzelfde onderliggende stream abstraction package dat
zowel met local files als met cloud storage kan werken. Elk package is een blokje en de pijlen
ertussen betekenen “gebruikt” (in tegenstelling tot “wordt gebruikt door”. Waarom is het wel of

(C) GEATEC engineering, license: Creative Commons



niet handig om de namen van de streams in de SQL database op te slaan. Waar in dit
ontwerp is sprake van abstractie.
Stap 7: Feedback op gemaakte oefening

Een of meerdere leden van elke groep delen hun programma, docent en medestudenten
geven feedback, evt. na vragen om nadere uitleg.

Vraag: Waarom is het vaak (maar niet altijd) verstandig het gebruik van niet-lokale variabelen
te vermijden?

Deel 3: Afronding

Stap 8: Evalueren of deze les goed “geland” is
Eén of meer leden van elke groep stellen vragen en/of geven tips en/of tops.

Stap 9: Huiswerk om je de lesstof verder eigen te maken
Zie opdrachten-tab in MS-Teams.

Inleveren van de uitgewerkte opdrachten die bij een les horen is, samen met een positief
verlopen eind-assessment, een noodzakelijke voorwaarde voor een voldoende en dient
uiterlijk 2 volle dagen voor de volgende les plaats te vinden, uitsluitend op de geéigende wijze
in MS-Teams.

De resultaten worden deels in de volgende les, deels individueel besproken. Maak de
opdrachten op het door jou gekozen niveau zo goed mogelijk, maar wees ook niet bang om
fouten te maken. Het gaat erom dat je een serieuze poging waagt en de docenten je indien
nodig kunnen helpen om verder te komen.

-]

(C) GEATEC engineering, license: Creative Commons



	Deel 1: Introductie
	Stap 1: Teaser
	Stap 2: Wat kun je na deze les
	Stap 3: Ophalen benodigde voorkennis

	Deel 2: Kern
	Stap 4: Uitleg van de nieuwe lesstof
	Stap 5: Voorbeelden en vragen door docent
	Stap 6: Oefenen met de nieuwe lesstof
	Stap 7: Feedback op gemaakte oefening

	Deel 3: Afronding
	Stap 8: Evalueren of deze les goed “geland” is
	Stap 9: Huiswerk om je de lesstof verder eigen te maken


