
Light on Python

July 27, 2018

Contents

1 Objects 2

1.1 Introduction . 2

1.2 Your �rst program . 2

1.3 Specifying your own classes . 3

1.4 Indentation, capitals and the use of _ . 5

2 Encapsulation 6

2.1 Interfaces . 6

2.2 Modules . 7

2.3 Polymorphism . 8

3 A pinch of functional programming 10

3.1 List comprehensions . 10

3.2 Transforming all elements of a list . 11

3.3 Selecting certain elements from a list . 12

3.4 Computing sum from a list . 12

3.5 Free functions and lambda expressions . 13

4 Inheritance 15

4.1 Implementation inheritance . 15

4.2 Interface inheritance . 16

4.3 Inheriting from library classes . 17

5 Objects and the real world 20

5.1 Object oriented modeling . 20

5.2 Pong, the object oriented way . 20

5.3 Step 1, analysis: Drawing up the domain model . 21

5.4 Step 2, design: Turning the domain model into a design model . 22

5.5 Step 3, programming: Working out program logic and laying the connection with Pyglet 25

1

CONTENTS 2

6 Design patterns 31

6.1 The solution principles behind your source code . 31

6.2 The Observer pattern . 31

6.2.1 Example situation . 31

6.2.2 Solution principle . 31

6.2.3 Example code . 32

6.3 The Adapter pattern . 34

6.3.1 Example situation . 34

6.3.2 Solution principle . 34

6.3.3 Example code . 35

6.4 The Property pattern . 37

6.4.1 Example situation . 37

6.4.2 Solution principle . 37

6.4.3 Example code . 38

6.5 *EXTRA* The Call Chaining pattern . 40

6.5.1 Example situation . 40

6.5.2 Solution principle . 41

6.5.3 Example code . 42

7 Python and performance: a wolf in sheeps clothes 52

7.1 The C++ connection . 52

7.2 Built-in datastructures and standard libraries . 52

7.2.1 Tuples . 52

7.2.2 Lists . 52

7.2.3 Dictionaries . 52

7.2.4 Sets . 52

7.3 3rd party libraries . 52

7.3.1 If Python doesn't o�er it, it ain't there at all . 52

7.3.2 Numpy . 52

7.3.3 Tensor�ow and Keras . 52

7.3.4 OpenGL . 52

7.3.5 Fenics/Dolphin . 52

7.4 Ready for prime time . 52

Chapter 1

Objects

1.1 Introduction

This course is for the adventurous:

• You'll learn Python the way a child would, even if you are an adult. Children are experts in learning. They
learn by doing, and pick up words along the way. In this text the same approach is followed. Not everything
is defined or even explained. Just try to find out how the example code works by guessing

and experimenting. The steps taken may seem large and sometimes arbitrary. It's a bit like being dropped
into the jungle without a survival course. But don't worry, computer programming isn't nearly as dangerous.
And the steps taken in fact follow a carefully planned path. Regularly try to put together something yourself.
Play with it. Evolution has selected playing as the preferred way of learning. I will not claim to improve on
that.

• You'll be addressed like an adult, even if you are a child. Simple things will be explained simple, but the
complexity of complex things will not avoided. The right, professional terminology will be used. If you don't
know a word, like �terminology�, Google for it. Having a separate child's world populated by comic �gures,
Santa Claus and storks bringing babies is a recent notion. Before all that, it was quite normal to have twelve
year old geniuses. But don't worry, programming can be pure fun, both for children and adults.

• You'll focus upon a very e�ective way of using Python right from the start. It is called object oriented
programming. And you'll learn some functional programming as well. Don't bother what these words mean.
It'll become clear underway. Mixing two ways of programming is no greater problem than children being
brought up with two or more languages: no problem at all. By the way, those children have markedly
healthier brains once they get older. There are also less important things to learn about Python. You learn
those gradually if you wish, while using Python. Just stay curious and look things up on the Internet.

I learned to program as a child, my father was programming the �rst computers in the early 1950's. We climbed
through a window into the basement of the o�ce building of his employer, a multinational oil company. Security
was no issue back then. Programming turned out to be fun indeed. And it still is, for me!

TIP: Sections marked with *EXTRA * provide additional material if you like to be challenged above the average or
already have quite some Python experience. You can become a good and productive Python programmer without
ever touching these sections. The most important thing is that you start coding regularly. Try e.g. to write a
simulation or a game and build that out gradually, regularly pushing the limits of your Python knowledge a bit
further.

1.2 Your �rst program

Install Python 3.x. The Getting Started topic on www.python.org will tell you how.

3

CHAPTER 1. OBJECTS 4

IMPORTANT: Python 3.x rather than 2.x is indeed required to run all of the examples correctly.

You will also need an editor. If you're on Windows, Google for Notepad++. If you're on Linux or Apple, you can
use Gedit. Then run the following program:

1 cities = [’Londen’, ’Paris’, ’New York’, ’Berlin’] # Store 4 strings into a list
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 1.1: prog/sort.py

The pieces of text at the end of each line, starting with #, are comments. Comments don't do anything, they just
explain what's happening. 'London', 'Paris', 'New York' and 'Berlin' are strings, pieces of text. You can recognize
such pieces of text by the quotes around them. Programmers would say these four objects are instances of class
string. To clarify, a particular dog is an instance of class Dog. There may be classes for which there are no instances.
Class Dinosaur is such a class, since there are no (living) dinosaurs left. So a class in itself is merely a description
of a certain category of objects.

Line 1 of the previous program is actually shorthand for line 1 of the following program:

1 cities = list ((’Londen’, ’Paris’, ’New York’, ’Berlin’)) # Construct list object from ’tuple’ of 4 string objects
2 print (’Class is:’, type (cities)) # Verify that it is indeed a list
3

4 print (’Before sorting:’, cities) # Print the unsorted list
5 cities.sort () # Sort the list
6 print (’After sorting: ’, cities) # Print the sorted list

Listing 1.2: prog/sort2.py

So you construct objects of a certain class by using the name of that class, followed by (). Inside this () there
maybe things used in constructing the object. In this case the object is of class list, and there's a so called tuple of
cities inside the (). Since the tuple itself is also enclosed in (), you'll have list ((...)), as can be seen in the source
code. For example (1, 2, 3) is a tuple of numbers, and list ((1, 2, 3)) is a list constructed from this. We could also
have constructed this list with the shorthand notation [1, 2, 3], which means exactly the same thing as list ((1, 2,
3)). A tuple is an immutable group of objects. So you could never sort a tuple itself. But the list you construct
from it is mutable, so you can sort it.

Once it works, try to make small alterations and watch what happens. Actually do this, it will speed up learning

1.3 Specifying your own classes

Generally, in a computer program you work with many di�erent classes of objects: buttons and lists, images and
texts, movies and music tracks, aliens and spaceships, chessboards and pawns.

So, looking at the �real� world: you are an instance of class HumanBeing. Your mother is also an instance of class
HumanBeing. But the object under your table wagging its tail is an instance of class Dog. Objects can do things,
often with other objects. You're mother and you can walk the dog. And your dog can bark, as dogs do.

Lets create a Dog class in Python, and then have some actual objects (dogs) of this class (species):

1 class Dog: # The species is called Dog
2 def bark (self): # Define that this dog itself can bark
3 print (’Wraff!’) # Which means saying "Wraff"
4

5

6 your_dog = Dog () # And than lets have an actual dog
7

8 your_dog.bark () # And make it bark

Listing 1.3: /prog/dog.py

CHAPTER 1. OBJECTS 5

Now lets allow di�erent dogs to bark di�erently by adding a constructor that puts a particular sound in a particular
dog when it's instantiated (born), and then instantiate your neighbours dog as well:

1 class Dog: # Define the dog species
2 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
3 self.sound = sound # Stores accepted sound into self.sound field inside new dog
4

5 def bark (self): # Define bark method
6 print (self.sound) # Prints the self.sound field stored inside this dog
7

8 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
9 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor

10

11 your_dog.bark () # Prints "Wraff"
12 neighbours_dog.bark () # Prints "Wooff"

Listing 1.4: /prog/neighbours_dog.py

After running this program and again experimenting with small alterations, lets expand it further. You and your
mother will walk your dog and the neighbours dog:

1 class HumanBeing: # Define the human species
2 def walk (self, dog): # The human itself walks the dog
3 print (’\nLets go!’) # \n means start on new line
4 dog.escape () # Just lets it escape
5

6 class Dog: # Define the dog species
7 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
8 self.sound = sound # Stores accepted sound into self.sound field inside new dog
9

10 def bark (self): # Define bark method
11 print (self.sound) # It prints the self.sound field stored inside this dog
12

13 def escape (self): # Define escape method
14 print (’Run to tree’) # The dog will run to the nearest tree
15 self.bark () # It then calls upon its own bark method
16 self.bark () # And yet again
17

18 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
19 neighbours_dog = Dog (’Wooff’) # Instantiate dog, provide sound "Wooff" to constructor
20

21 you = HumanBeing () # Create yourself
22 mother = HumanBeing () # Create your mother
23

24 you.walk (your_dog) # You walk your own dog
25 mother.walk (neighbours_dog) # your mother walks the neighbours dog

Listing 1.5: prog/walking_the_dogs

Run the above program and make sure you understand every step of it. Add some print statements printing
numbers, to �nd out in which order it's executed. Adding such print statements is a simple and e�ective method
to debug a program (�nd out where it goes wrong).

In the last example the walk method, de�ned on line 2, receives two parameters (lumps of data) to do its job: self
and dog. It then calls (activates) the escape method of that particular dog: dog.escape (). Lets follow program
execution from line 24: you.walk (your_dog). This results in calling the walk method de�ned on line 2, with
parameter self referring to object you and parameter dog referring to object your_dog. The object you before the
dot in you.walk (your_dog) is passed to the walk method as the �rst parameter, called self, and your_dog is passed
to the walk method as the second parameter, dog.

Parameters used in calling a method, like you and your_dog in line 24 are called actual parameters. Parameters that
are used in de�ning a method, like self and dog in line 2 are called formal parameters. The use of formal parameters
is necessary since you cannot predict what the names of the actual parameters will be. In the statement mother.walk

CHAPTER 1. OBJECTS 6

(neighbours_dog) on line 25, di�erent actual parameters, mother and neighbour_dog, will be substituted for the
same formal parameters, self and dog. Passing parameters to a method is a general way to transfer information to
that method.

1.4 Indentation, capitals and the use of _

As can be seen from the listings, indentation is used to tell Python that something is a part of something else, e.g.
that methods are part of a class, or that statements are part of a method. You have to be concise here. Most
Python programmers indent with multiples of 4 spaces. For my own non-educational programs I prefer tabs.

Python is case-sensitive: uppercase and lowercase letters are considered distinct. When you specify your own classes,
it is common practice to start them with a capital letter and use capitals on word boundaries: HumanBeing. For
objects, their attributes (which are also objects) and their methods, in Python it is common to start with a lowercase
letter and use _ on word boundaries: bark, your_dog.

Constructors, the special methods that are used to initialize objects (give them their start values), are always named
__init__.

There's a recommendation about how to stylize your Python source code, it's called PEP 0008 and its widely
followed. But it is strictly Python and I am mostly using a mix of Python and C++. Since many C++ libraries
have di�erent naming conventions, I don't usually follow these rules. If you want to learn a style that is consis-
tent over multiple programming languages, use capitals on word boundaries for objects, atributes and methods
as well instead of _, but always start them with a lowercase letter. Only class names start with an uppercase
letter. By the way WritingClassNamesLikeThis or writingAllOtherNamesLikeThis is called camel case, while writ-
ing_all_other_names_like_this is called pothole case. You'll �nd examples of both the camel case and the potholse
case style in this course.

Chapter 2

Encapsulation

2.1 Interfaces

All objects of a certain class have the same attributes, but with distinct values, e.g. all objects of class Dog have the
attribute self.sound. And all objects of a certain class have the same methods. For our class Dog in the last example,
those are the methods __init__, bark and escape. Objects can have dozens or even hundreds of attributes and
methods. In line 4 of the previous example, method walk of a particular instance of class HumanBeing, referred to
as self, calls method escape of a particular instance of class Dog, referred to as dog.

So in the example you.walk calls your_dog.escape and mother.walk calls neighbours_dog.escape. Verify this by
reading through the code step by step, and make sure not to proceed until you fully and thoroughly understand
this.

In general any object can call any method of any other object. And it also can access any attribute of any other
object. So objects are highly dependent upon each other. That may become a problem. Suppose change your
program, e.g. by renaming a method. Then all other objects that used to call this method by its old name will
not work anymore. And changing a name is just simple. You may also remove formal parameters, change their
meaning, or remove a method altogether. In general, in a changing world, you may change your design. As your
program grows bigger and bigger, the impact of changing anything becomes disastrous.

To limit the impact of changing a design, standardization is the answer. Suppose we have two subclasses of
HumanBeing : NatureLover and CouchPotato. Objects of class NatureLover go out with their dogs to enjoy a walk.
Objects of class CouchPotato just deliberately let the dog escape at the doorstep, that it might walk itself while
they're watching their favorite soap. While they both have a walk method, walking the dog means something quite
di�erent to either of them. A programmer would say that their interface is standard (walk), but their implementation
is di�erent (calling dog.follow_me versus calling dog.escape). Let's see this in code:

1 class NatureLover: # Define a type of human being that loves nature
2 def walk (self, dog): # The NatureLover walks the dog, really
3 print (’\nC\’mon!’) # \n means start on new line, \’ means ’ inside string
4 dog.follow_me () # Just lets it escape
5

6 class CouchPotato: # Define a type of human being that loves couchhanging
7 def walk (self, dog): # The CouchPotato walks the dog, well, lets it go
8 print (’\nBugger off!’) # \n means start on new line
9 dog.escape () # Just lets it escape

10

11 class Dog: # Define the dog species
12 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
13 self.sound = sound # Stores accepted sound into self.sound field inside new dog
14

15 def _bark (self): # Define _bark method, not part of interface of dog
16 print (self.sound) # It prints the self.sound field stored inside this dog
17

7

CHAPTER 2. ENCAPSULATION 8

18 def follow_me (self): # Define escape method
19 print (’Walk behind’) # The dog walks one step behind the boss
20 self._bark () # It then calls upon its own _bark method
21 self._bark () # And yet again
22

23 def escape (self): # Define escape method
24 print (’Hang head’) # The dog hangs his head
25 self._bark () # It then calls upon its own _bark method
26 self._bark () # And yet again
27

28 your_dog = Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
29 his_dog = Dog (’Howl’) # Instantiate dog, provide sound "Howl" to constructor
30

31 you = NatureLover () # Create yourself
32 your_friend = CouchPotato () # Create your friend
33

34 you.walk (your_dog) # Interface: walk dog, implementation: going out together
35 your_friend.walk (his_dog) # Interface: walk dog, implementation: sending dog out

Listing 2.1: prog/nature_potato.py

There's a bit more to this example program. Instances of class Dog are meant to be creatable anywhere in the
code, in which case constructor __init__ will be called. And their follow_me and escape methods are meant to
be callable anywhere in the code as well. In other words, the __init__, follow_me and escape methods constitute
the interface of class Dog, meant for public use. And then there's the _bark method. As you can see it starts with
_. By starting a method with a single _, Python programmers indicate that this method does not belong to the
interface of the class, but is only meant for private use. In this case, _bark is only called by methods follow_me
and escape of the Dog class itself. What exactly constitutes private use and what doesn't will be worked out further
after explanation of Python's module concept.

It is also possible to prepend a _ to an attribute name, to indicate that this attribute is not part of the interface.
But this is rarely done, since many programmers feel that attributes shouldn't be part of the interface anyhow.
While there's certainly some sense in that, it is not a general truth. One should always be open to picking the
best solution at hand, which sometimes means deviating from textbook wisdom or common practice. Of course
following common practice has some advantages of its own, and when working in a team, the best solution may be
a standard solution.

In this text, the convention of starting private members with a _ is not stricktly adhered to, as it is a Python-only
habit. As such it is once again less practical if Python is combined with C++. Also at the beginning of a project
it is often not completely clear what belongs to the interface an what not. You should give yourselve some leeway
here. But when you cooperate with multiple developers on a Python-only project, using the _ convention may
come in handy to make clear to your colleagues what the interface of a class is, from the source code alone.

TIP: Make your source code self-explanatory. No other documents should be required to understand it. This is
because in the end the source code is the only thing that remains up to date through many years of ad hoc changes,
company take-overs and job-hopping colleagues. Maybe it shouldn't be so, but trust me, it is.

(Sometimes even the source code of business-critical applications is lost. Ain't no cure against that.)

2.2 Modules

Python programs can be split into multiple source �les called modules. Let's do that with the previous example
program:

1 import bosses
2 import dogs
3

4 your_dog = dogs.Dog (’Wraff’) # Instantiate dog, provide sound "Wraff" to constructor
5 his_dog = dogs.Dog (’Howl’) # Instantiate dog, provide sound "Howl" to constructor

CHAPTER 2. ENCAPSULATION 9

6

7 you = bosses.NatureLover () # Create yourself
8 your_friend = bosses.CouchPotato () # Create your friend
9

10 you.walk (your_dog) # Interface: walk dog, implementation: going out together
11 your_friend.walk (his_dog) # Interface: walk dog, implementation: sending dog out

Listing 2.2: prog/dog_walker/dog_walker

1 class NatureLover: # Define a type of human being that loves nature
2 def walk (self, dog): # The NatureLover walks the dog, really
3 print (’\nC\’mon!’) # \n means start on new line, \’ means ’ inside string
4 dog.follow_me () # Just lets it escape
5

6 class CouchPotato: # Define a type of human being that loves couchhanging
7 def walk (self, dog): # The CouchPotato walks the dog, well, lets it go
8 print (’\nBugger off!’) # \n means start on new line
9 dog.escape () # Just lets it escape

Listing 2.3: prog/dog_walker/bosses.py

1 class Dog: # Define the dog species
2 def __init__ (self, sound): # Constructor, named __init__, accepts provided sound
3 self.sound = sound # Stores accepted sound into self.sound field inside new dog
4

5 def _bark (self): # Define _bark method, not part of interface of dog
6 print (self.sound) # It prints the self.sound field stored inside this dog
7

8 def escape (self): # Define escape method
9 print (’Hang head’) # The dog hangs his head

10 self._bark () # It then calls upon its own _bark method
11 self._bark () # And yet again
12

13 def follow_me (self): # Define escape method
14 print (’Walk behind’) # The dog walks one step behind the boss
15 self._bark () # It then calls upon its own _bark method
16 self._bark () # And yet again

Listing 2.4: prog/dog_walker/dogs.py

As can be seen, program dog_walker.py imports modules bosses.py and dogs.py. By putting these modules in
separate �les, they could also be used in other programs than dog_walker. In order to make this type of reuse
practical, it is important that the classes de�ned in bosses.py and dogs.py have a standard interface that doesn't
change whenever any detail in the Boss or Dog classes changes. So the use of _ comes in handy here.

2.3 Polymorphism

In the previous example, class NatureLover and class CouchPotato have the same interface, namely only method
walk. Since they have the same interface they may be used in similar ways, even though their implementation of
the interface is di�erent. Consider the following program:

1 import random # One of Python’s many standard modules
2

3 import bosses
4 import dogs
5

6 # Create a list of random bosses
7 humanBeings = [] # Create an emptpy list
8 for index in range (10): # Repeat the following 10 times, index running from 0 to 9
9 humanBeings.append (# Append a random HumanBeing to the list by

10 random.choice ((bosses.NatureLover, bosses.CouchPotato)) () # randomly selecting its class

CHAPTER 2. ENCAPSULATION 10

11) # and calling its contructor
12

13 # Let them all walk a new dog with an random sound
14 for humanBeing in humanBeings: # Repeat the following for every humanBeing in the list
15 humanBeing.walk (# Call implementation of walk method for that type of humanBeing
16 dogs.Dog (# Construct a new dog as parameter to the walk method
17 random.choice (# Pick a random sound
18 (’Wraff’, ’Wooff’, ’Howl’, ’Kaii’, ’Shreek’) # fom this tuple of sounds
19)
20)
21)

Listing 2.5: prog/dog_walker/poly_walker.py

The humanBeings list contains objects of di�erent classes: NatureLover and CouchPotato. Such a list is called
polymorphic which means: �of many shapes�. Since objects of class NatureLover and objects of class CouchPotato
have the same interface, in this case only the walk method, this is not a problem, we can write humanBeing.walk,
no matter whether we deal with a NatureLover or with a CouchPotato. But how they do this walking, the
implementation, is di�erent. A NatureLover will join the dog, a CouchPotato will let it go alone.

So providing a standard interface has more advantages than design �exibility alone. If objects of distinct classes
have the same interface, they can easily be used without exactly knowing what particular object class you're dealing
with. All elements of the humanBeing know how to walk. Except they do it di�erently. Since you don't have to
know whether you're dealing with a NatureLover or a CouchPotato to call its walk method, you can store objects
of both classes randomly in one object collection, in this case a list, without keeping track of their exact class. It
is enough to know they all can walk. This careless way of handling di�erent types of objects is called duck typing.
If it walks like a duck, swims like a duck, sounds like a duck, let's treat it like a duck. A collection, e.g. a list,
containing types of various classes is called a polymorphic object collection.

Objects, encapsulation, standard interfaces and polymorphism are important ingredients in the way of programming
that was brie�y mentioned in the introduction: object oriented programming. You now know what this means:
programming in such a way that you deal with objects that contain attributes and methods. Objects naturally
�know� things (attributes) and �can do� things (methods). The alternative would be to keep data and program
statements completely separated, a way of working called procedural programming.

Chapter 3

A pinch of functional programming

3.1 List comprehensions

In the introduction the promise was made to teach you some functional programming as well. While this may sound
a bit arbitrary and even careless, it is not. The aim of this course is to lead you straight to e�cient programming
habits, not to merely �ood you with assorted facts. The combination of object oriented Programming and functional
programming is especially powerful. To show a �rst glimpse of that power, lets slightly reformulate the previous
example, using something called a list comprehension.

1 import random # One of Python’s many standard modules
2

3 import bosses
4 import dogs
5

6 # Create a list of random bosses
7 human_beings = [# Start a so called list comprehension
8 random.choice (# Pick a random class
9 (bosses.NatureLover, bosses.CouchPotato) # out of this tuple

10) () # and call its constructor to instantiate an object
11 for index in range (10) # repeatedly, while letting index run from 0 to 9
12] # End the list comprehension, it will hold 10 objects
13

14 # Let them all walk a new dog with an random sound
15 for human_being in human_beings: # Repeat the following for every human being in the list
16 human_being.walk (# Call implementation of walk method for that type of human being
17 dogs.Dog (# Construct a dog as parameter to the walk method
18 random.choice (# Pick a random sound
19 (’Wraff’, ’Wooff’, ’Howl’, ’Kaii’, ’Shreek’) # fom this tuple of sounds
20)
21)
22)

Listing 3.1: prog/dog_walker/func_walker.py

While this example resembles the one before, there's a di�erence. In listing 2.5 you told the computer step by step
what to do. In line 7 you �rst created an empty list, although that is not what you wanted in the end. And then
you entered a so called loop, starting at line 8. Cycling through this loop ten times, new HumanBeing objects get
appended to the list one by one, index running from 0 to 9.

In listing 3.1 you do not �rst create an empty list. You just specify directly what you want in the end, a list of
random objects of class HumanBeing, one for each value of index where index running form 0 to 9.

Suppose you want a box with hundred chocolates. You could go to a shop and do the following:

Tell the shopkeeper to give you an empty box

11

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 12

While counting from 1 to 100:
Tell the shopkeeper to put in a chocolate

This is the approach taken in listing 2.5. But you could also take a di�erent approach:

Tell the shopkeeper to give you a box with 100 chocolates counted out for you.

This is the approach taken in listing 3.1.

To tell the shopkeeper chocolate by chocolate how to prepare a box of hundred chocolates is unnatural to most,
except for extreme control freaks. But telling a computer step by step what to do is natural to most programmers.
There are a number of disadvantages to the control freak approach:

1. Telling the shopkeeper step by step how to �ll the chocolate box keeps you occupied. It would be confusing
to meanwhile direct the shopkeeper to �ll a bag with cookies, cookie by cookie, because in switching between
these tasks, you could easily lose track of the proper counts. A programmer would say you cannot multitask
very well with the control freak approach.

2. Even doing one thing at a time, you would still have to remember how many chocolates are already in the
box, also if you see your partner kissing your best friend through the shop window. A programmer would say
you'd have to keep track of the state of the box. That's error prone, the shopkeeper has other options, he can
e.g. measure the total weight of the box, which doesn't require remembering anything.

3. The chocolates are put into the box one by one, a time consuming process. The shopkeeper cannot work in
parallel with his assistant, each putting �fty cookies in the box, being ready twice as fast.

In principle the Functional Programming approach is suitable to alleviate this problems. It allows for:

1. Multi-tasking, that is switching between multiple tasks on one processor without confusion, since you only
have to specify the end result.

2. Stateless programming, which helps avoiding errors that emerge when at any point program state is not what
you assume it to be.

3. Multi-processing, that is performing multiple tasks in parallel on multiple processors.

While standard Python does currently not fully bene�t from these advantages, learning this way of programming
is a good investment in the future, since having multiple processors in a computer is rapidly becoming the norm.
Apart from that, once you get used to things like list comprehensions, they are very handy to work with and result
in compact but clear code.

3.2 Transforming all elements of a list

Suppose we �ll a list with numbers and from that want to obtain a list with the squares of these numbers. The
functional way to do this is:

1 even_numbers = [2 * (index + 1) for index in range (10)] # Create [2, 4, ..., 20]
2 print (’Even numbers:’, even_numbers)
3

4 squared_numbers = [number * number for number in even_numbers] # Compute list of squared numbers
5 print (’Squared numbers:’, squared_numbers)

Listing 3.2: prog/func_square.py

The functional way requires slightly less code than the non-functional way, but that's just a bonus. In the beginning
you may prefer the non-functional way, since its explicit steps make it easier to debug. But that will probably shift
once you gain experience, since the conciseness of the functional way helps preventing bugs in the �rst place.

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 13

1 even_numbers = []
2 for index in range (10):
3 even_numbers.append (2 * (index + 1))
4 print (’Even numbers:’, even_numbers)
5

6 squared_numbers = []
7 for even_number in even_numbers:
8 squared_numbers.append (even_number * even_number)
9 print (’Squared numbers:’, squared_numbers)

Listing 3.3: prog/nonfunc_square.py

3.3 Selecting certain elements from a list

Suppose we have a list with names and from that want to obtain a list with only those names starting with a 'B'.
The functional way to do this is:

1 all_names = [’Mick’, ’Bonny’, ’Herbie’, ’Bono’, ’Ella’, ’Ray’, ’Barbara’] # Create name list
2 print (’All names:’, all_names)
3

4 filtered_names = [name for name in all_names if name [0] == ’B’] # Select names starting with B
5 print (’Filtered names:’, filtered_names)

Listing 3.4: prog/func_select.py

The non functional way again needs more words:

1 all_names = [’Mick’, ’Bonny’, ’Herbie’, ’Bono’, ’Ella’, ’Ray’, ’Barbara’]
2 print (’All names:’, all_names)
3

4 filtered_names = []
5 for name in all_names:
6 if name [0] == ’B’:
7 filtered_names.append (name)
8 print (’Filtered names:’, filtered_names)

Listing 3.5: prog/nonfunc_select.py

3.4 Computing sum from a list

Suppose we have a list with numbers and from that want to obtain the sum of that numbers. The functional way
to do this is:

1 even_numbers = [2 * (index + 1) for index in range (10)] # Create [2, 4, 6, ..., 20]
2 print (’Even numbers:’, even_numbers)
3

4 total = sum (even_numbers) # Compute sum
5 print (’Total:’, total)

Listing 3.6: prog/func_sum.py

The non functional way is:

1 even_numbers = []
2 for index in range (10):
3 even_numbers.append (2 * (index + 1))
4 print (’Even numbers:’, even_numbers)
5

6 total = 0
7 for even_number in even_numbers:

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 14

8 total += even_number
9 print (’Total:’, total)

Listing 3.7: prog/nonfunc_sum.py

3.5 Free functions and lambda expressions

Whereas methods are part of a class, free functions can be de�ned anywhere. They don't have a self parameter,
and are not preceded by an object and a dot, when called.

1 def add (x, y): # Free function, defined outside any class, no self parameter
2 return x + y # It may return a result, but a method could do that also
3

4 def multiply (x, y):
5 return x * y
6

7 sum = add (3, 4) # Call the first free function
8

9 print (’3 + 4 =’, sum)
10 print (’3 * 4 =’, multiply (3, 4)) # Call the second free function

Listing 3.8: prog/free_functions.py

It is also possible to de�ne free functions that don't have a name. These are called lambda functions, and are
written in a shorthand way, as can be seen in the following program:

1 functions = [
2 lambda x, y: x + y, # Shorthand for anonymous add function
3 lambda x, y: x * y # Shorthand for anonymous multiply function
4]
5

6

7 sum = functions [0] (3, 4) # Call the first lambda function
8

9 print (’3 + 4 =’, sum)
10 print (’3 * 4 =’, functions [1] (3, 4)) # Call the second lambda function

Listing 3.9: prog/lambdas.py

The following program makes use of several free functions to compute the area of squares and the volume of cubes
from a list of side lengths:

1 def power (x, n): # Define free function, outside any class, no self parameter
2 result = x
3 for i in range (n - 1): # Note that i runs from 0 to n - 2
4 result *= x # so this is performed n - 1 times
5 return result
6

7 test = power (2, 8) # Call free function, no object before the dot
8 print (’test:’, test)
9

10 def area (side): # Define free function, computes area of square
11 return power (side, 2) # Call power function to do the job
12

13 def volume (side): # Define free function, computes volume of cube
14 return power (side, 3) # Call power function to do the job
15

16 def apply (compute, numbers): # Define free function that applies compute to numbers
17 return [compute (number) for number in numbers] # Return list of computed numbers
18

19 sides = [1, 2, 3] # List of side lengths

CHAPTER 3. A PINCH OF FUNCTIONAL PROGRAMMING 15

20 areas = apply (area, sides) # Let apply compute areas by supplying area function
21 volumes = apply (volume, sides) # Let apply compute volumes by supplying volume function
22

23 print (’sides:’, sides)
24 print (’areas:’, areas)
25 print (’volumes:’, volumes)

Listing 3.10: prog/free_functions2.py

Take a good look at the apply function. Its �rst formal parameter, compute, is a free function, that will then be
applied to each element of the second formal parameter, numbers, that is a list. Since the area and volume functions
are only used as actual parameter to apply, they can also be anonymous, as is demonstrated in the program below.

1 def power (x, n): # Define free function, outside any class, no self parameter
2 result = x
3 for i in range (n - 1): # Note that i runs from 0 to n - 2
4 result *= x # so this is performed n - 1 times
5 return result
6

7 test = power (2, 8) # Call free function, no object before the dot
8 print (’test:’, test)
9

10 def apply (operation, numbers): # Define free function that applies compute to numbers
11 return [operation (number) for number in numbers] # Return list of computed numbers
12

13 sides = [1, 2, 3]
14

15 areas = apply (lambda side: power (side, 2), sides) # Define area function and pass it to apply
16 volumes = apply (lambda side: power (side, 3), sides) # Define volume function and pass it to apply
17

18 print (’sides:’, sides)
19 print (’areas:’, areas)
20 print (’volumes:’, volumes)

Listing 3.11: prog/lambdas2.py

It is quite possible to give a lambda function a name, like this:

1 add = lambda x, y: x + y # Name add now referes to the lambda function
2 print (add (7, 8)) # and you can call it via that name

Listing 3.12: prog/named_lambda.py

Chapter 4

Inheritance

4.1 Implementation inheritance

Classes can inherit methods and attributes from other classes. The class that inherits is called descendant class or
derived class. The class that it inherits from is called ancestor class or base class. Look at the following example:

1 class Radio:
2 def __init__ (self, sound):
3 self.sound = sound
4

5 def play (self):
6 print (’Saying:’, self.sound)
7 print ()
8

9 class Television (Radio):
10 def __init__ (self, sound, picture):
11 Radio.__init__ (self, sound)
12 self.picture = picture
13

14 def play (self):
15 self._show ()
16 Radio.play (self)
17

18 def _show (self):
19 print (’Showing:’, self.picture)
20

21 tuner = Radio (’Good evening, dear listeners’)
22 carradio = Radio (’Doowopadoodoo doowopadoodoo’)
23 television = Television (’Here is the latest news’, ’Newsreader’)
24

25 print (’TUNER’)
26 tuner.play ()
27

28 print (’CARRRADIO’)
29 carradio.play ()
30

31 print (’TELEVISION’)
32 television.play ()

Listing 4.1: prog/radio_vision.py

In line 15 the play method of class Television calls the show method of the same class. In line 16 it calls the play
method of class Radio. Compare 15 to 16. In line 15 self is placed before the dot. Since in line 16 the Radio class
occupies the place before the dot, self is passed as �rst parameter there. The same holds for line 11, where the

16

CHAPTER 4. INHERITANCE 17

constructor of Television calls the constructor of Radio. Although this class hierarchy is allowed, an experienced
designer would not program it like this.

1. A television is not merely some special type of radio with a screen glued on. It has become a totally di�erent
device altogether.

2. A radio may have facilities that a television hasn't, e.g. an analog tuning dial. Televisions would inherit that,
but it would serve no purpose and just be confusing.

3. It would probably be more �exible to have class Radio and class Television both inherit from an abstract
class: Microelectronics. Abstract classes are classes that serve as a general category, but of which there are
no objects. The objects themselves are always specialized, so either of class Radio or of class Television.
Abstract base classes are handy to specify an interface without making early choices about how that interface
is implemented.

4.2 Interface inheritance

An example of a class hierarchy with an abstract class at the top is given in the following program:

1 import time
2

3 class HumanBeing:
4 def __init__ (self, name):
5 self.description = name + ’ the ’ + self.__class__.__name__.lower ()
6

7 def walk (self):
8 self._begin_walk ()
9 for i in range (5):

10 print (self.description, ’is counting’, i + 1)
11 self._end_walk ()
12 print ()
13

14 class NatureLover (HumanBeing):
15 def _begin_walk (self):
16 print (self.description, ’goes to the park’)
17

18 def _end_walk (self):
19 print (self.description, ’returns from the park’)
20

21

22 class CouchPotato (HumanBeing):
23 def _begin_walk (self):
24 print (self.description, ’lets the dino escape’)
25

26 def _end_walk (self):
27 print (self.description, ’catches the dino’)
28

29 class OutdoorSleeper (NatureLover, CouchPotato):
30 def _begin_walk (self):
31 NatureLover._begin_walk (self)
32 CouchPotato._begin_walk (self)
33 print (self.description, ’lies on the park bench’)
34

35 def _end_walk (self):
36 print (self.description, ’gets up from the park bench’)
37 CouchPotato._end_walk (self)
38 NatureLover._end_walk (self)
39

40 for human_being in (NatureLover (’Wilma’), CouchPotato (’Fred’), OutdoorSleeper (’Barney’)):

CHAPTER 4. INHERITANCE 18

41 human_being.walk ()

Listing 4.2: prog/nature_sleeper.py

Class HumanBeing is abstract, since it don't have the methods begin_walk and end_walk, that are called in walk
in line 8 and 11. So it's no use creating objects of that class, since they don't know how to walk. All other classes
inherit the walk method, so they don't have to de�ne a walk method of their own. Since they all inherit walk,
they are guaranteed to support the it in their interface. But they de�ne their own specialized implementation of
begin_walk and end_walk. Note that the begin_walk and end_walk of OutdoorSleeper call upon the begin_walk
and end_walk of NatureLover and CouchPotato to do their job.

Be sure to follow every step of the example program above, since it contains important clues to an object oriented
programming style called �Fill in the blanks� programming: Specify as much as you can high up in the class hierarchy
(method walk), and only �ll in speci�c things (methods begin_walk and end_walk) in the descendant classes. It
is with �Fill in the blanks� programming that true object orientation starts to deliver. While this isn't visible in a
small example, �Fill in the blanks� programming makes the source code of your class hierarchy shrink while gaining
clarity, a sure sign that you're on the right track. �Fill in the blanks� programming is one place where the DRY
principle of programming pays of: Don't Repeat Yourself. If you can specify behaviour in an ancestor class, why
specify it over and over again in the descendant classes. If you follow the DRY principle, your code becomes more
�exible, because changes in behaviour only have to be made in one single place, avoiding the risk of inconsistent
code.

Apart from following the DRY principle, the fact that interface methods de�ned higher up in the class hierarchy are
automatically there in derived classes, is in itself one of the most powerful features of inheritance: Having objects
of di�erent subclasses all inherit the same standard interface contributes to design �exibility, since these objects
become highly interchangeable, even though their behaviour is di�erent.

As a bonus the size of the code using these objects also shrinks, since it only has to deal with one type of interface.
When switching from procedural to object oriented programming, it is not uncommon to see the source code shrink
with a factor �ve. While briefness never is a goal in itself, it is a very important contribution to clarity: What
isn't there doesn't have to be understood. The di�erence between having to get your head around twenty pages of
source code as opposed to a hundred may veryAs an exampl we will be using a game engine library called Pyglet.
well be crucial in successfully understanding the work of a colleague, or your own work of several years back, for
that matter.

4.3 Inheriting from library classes

In section 4.2 the concept of modules was explained. There are many ready-made modules available for Python.
Some are distributed with Python itself. Others are part of so called libraries. A library is a collection of modules
that together enable you to make a speci�c category of programs without coding all the details yourself. For Python
there are lots of libraries available to help you build almost any type of computer program. The majority of these
libraries are available on https://pypi.python.org/pypi. An important part of the power of Python lies in the fact
that so many libraries are available for it, most of them for free. As an example we will be using a library called
Pyglet. Pyglet provides basic building blocks, like sprites (small moving objects), text labels and windows to make
simulations and games. One way to use these building blocks is to inherit from them. Since the purpose of inheriting
in this case is to use their behaviour in our own application, this is an example of implementation inheritance. The
following program uses inheritance from Pyglet classes to make some sprites randomly drift apart. Study the source
code and experiment with it, making small changes and see what the e�ect is. Consult the Pyglet documentation
where necessary.

1 import os
2 import random
3

4 import pyglet
5 from pyglet.gl import *
6

7 class Sprite (pyglet.sprite.Sprite):
8 def __init__ (self, fileName):
9 image = pyglet.image.load (fileName) # Load it as an image

https://pypi.python.org/pypi

CHAPTER 4. INHERITANCE 19

10 image.anchor_x = image.width // 2 # Lay its coordinate reference
11 image.anchor_y = image.height // 2 # in its middle
12 pyglet.sprite.Sprite.__init__ (self, image, 0, 0) # Initialize ancestor
13

14 class Window (pyglet.window.Window):
15 orthoWidth = 1000
16 orthoHeight = 750
17 maxSpeed = 100 # / s
18

19 def __init__ (self):
20 pyglet.window.Window.__init__ (# Initialize ancestor
21 self, 640, 480, resizable = True, visible = False, caption = ’Drifting sprites’
22)
23

24 self.on_resize = self.resize # Called if window is resized
25 self.on_draw = self.draw # Called if window has to be redrawn
26

27 self.set_location (# Put window on middle of its screen
28 (self.screen.width - self.width) // 2,
29 (self.screen.height - self.height) // 2
30)
31

32 self.clear () # Clear window
33 self.set_visible (True) # Show window once it’s cleared
34

35 self.sprites = []
36 for fileName in os.listdir (# For each file
37 os.path.dirname (os.path.realpath(__file__)) # in the folder of this source file
38):
39 if fileName.endswith (’.png’): # If its a .png file
40 self.sprites.append (Sprite (fileName)) # Append to the sprite list
41

42 pyglet.clock.schedule_interval (# Install update callback that
43 self.update, 1/20. # will be called 60 times per s
44)
45 pyglet.app.run () # Start pyglet engine
46

47 def resize (self, width, height): # When the user resizes the window
48 glViewport (0, 0, width, height) # Tell openGL window size
49

50 glMatrixMode (GL_PROJECTION) # Work with projection matrix
51 glLoadIdentity () # Start with identity matrix
52 glOrtho (# Adapt it to orthographic projection
53 -self.orthoWidth // 2, self.orthoWidth // 2, # Lay origin in the middle
54 -self.orthoHeight // 2, self.orthoHeight // 2,
55 -1, 1
56)
57

58 glMatrixMode (GL_MODELVIEW) # Work with model matrix
59 glLoadIdentity () # No transforms
60

61 def update (self, deltaT):
62 for sprite in self.sprites: # For every sprite in the sprite lst
63 sprite.x += random.uniform (-1, 1) * self.maxSpeed * deltaT # Move it
64 sprite.y += random.uniform (-1, 1) * self.maxSpeed * deltaT
65

66 def draw (self):
67 self.clear ()
68

69 for sprite in self.sprites: # For every sprite in the sprite list
70 sprite.draw () # Draw it
71

CHAPTER 4. INHERITANCE 20

72 Window ()

Listing 4.3: intro_pyglet/drifting_sprites.py

Chapter 5

Objects and the real world

5.1 Object oriented modeling

One way or another, most computer programs represent something in the real world. Example programs in tutorials
are often about administration, the objects representing real world things like companies, departments, employees
and contracts. But writing administrative software is just one way to capture reality and put it into a computer.
Dynamic modeling of physics, like applied in simulations and games, is another way. An employee would not be
modeled by its name, address and salary, but rather by a moving on-screen avatar (stylized image of a person)
controlled by a game paddle. Simulations and games are what we'll use as examples in this text. Having objects
represent things in the real world, either in an administrative way or by means of simulation is called object oriented
modeling, and your eventual computer program is said to be a 'model' of some aspect of the real world ('application
domain').

In short, object oriented modeling consists of the following steps:the descendants

1. Analysis: Find out which type of things play a role in the part of the real world that your program is about
(the 'application domain') and how they relate to each other. Represent each relevant type of thing by a class.
These classes are called 'domain classes'. If a B object denotes a special type of A object, let class B inherit
from class A. If a C object refers to a D object, let C have an attribute of class D. Note that attributes merely
refer to an object, they are not the object itself. So two objects may refer to each other, both holding a
reference to the other as an attribute. The result of this �rst step is called a domain model.

2. Design: Try to generalize the concepts in your application domain, in order to come up with a sensible
inheritance hierarchy, e.g. looking for common interfaces or common functionality. This will lead to the
addition of so called design classes, as opposed to the domain classes that result from step 1. Your domain
model has now evolved into a design model.

3. Programming: Elaborate your code to put whole thing to work, in our case in Python. Adjust your class
hierarchy as your understanding of the problem at hand grows. Your program will be a working object oriented
model of a part or aspect of the real world.

TIP: The steps usually ovelap. It is very e�cient to inventorize domain classes and design a class hierarchy using
Python syntax right from the start, adding permanent comments to document why you took certain design decisions.
Some people like to view the relations between e.g. classes in a graphical way. There exist several tools that generate
diagrams from Python source code. Don't go the opposite way: generating source code from diagrams. This only
works in the simplest of situations and is too restrictive in the long run. Some people limit the use of the term
'Domain Modeling' to step 1. In my view the resulting computer program itself is the model we're eventually after.

5.2 Pong, the object oriented way

Let's look at the humblest of all computer games: Pong.

21

CHAPTER 5. OBJECTS AND THE REAL WORLD 22

1. Analysis: The application domain to be modeled is the real world game of table tennis. Things that play an
important role in that application domain are paddles, a ball, a scoreboard and the notion of a game. To play
the game, the paddles can be moved. The ball can bounce against the paddles, which changes its direction as
dictated by physics. Whenever the ball goes out, the score is adapted. To represent the application domain,
we need one object of class Ball and two objects of class Paddle an object of class Scoreboard, and, less obvious
since you can not touch or eat it: an object of class Game. And we'll have to establish relations between the
objects and sometimes between the classes.

2. Design: Each game has attributes (not in the programming sense of the word but in the every day sense). For
example the main attributes required for skiing ar skis, sticks and a helmet. In our game the Paddle objects,
Ball object and Scoreboard object are all attributes, i.e. they are a specialisation of class Attribute. Whereas
the scoreboard stays in place, the paddles and ball move around the screen. Such small moving objects are
called sprites, so instances of class Sprite. Note that Attribute and Sprite are no domain classes. Rather they
are added during design to catch commonalities in the domain classes resulting from step 1. Such classes
are called design classes. As we will see, all descendants of class Attribute share the same interface, enabling
polymorphism.

3. Programming: We need to elaborate those classes to make the program work rather than just sit there.
Paddles need to be movable via the keyboard. The ball has to bounce against the paddles and the wall. If
the ball goes out,the score has to be adapted. Partially we'll code this functionality ourselves, partially it will
be taken from the Pyglet game engine library downloaded from Pypi.

5.3 Step 1, analysis: Drawing up the domain model

In step 1, take stock of the domain classes to obtain the following valid Python program:

1 class Paddle:
2 pass # Placeholder, no code yet
3

4 class Ball:
5 pass
6

7 class Scoreboard:
8 pass
9

10 class Game:
11 pass

Listing 5.1: pong/pong1.py

As the second part of step 1, inventorize the relations between objects or classes:

• Each Paddle instance needs a game attribute that is a reference to game that it's part of. It also needs an
index attribute that indicates wether it is the left or the right paddle.

• The Ball instance needs a game attribute that is a reference to the game that it's part of.

• The Scoreboard instance needs a game attribute that is a reference to the game that it's part of.

• The Game needs a paddles attribute that is a list of references to the paddles of the game, a ball attribute
that is a reference to the ball of the game and a scoreboard attribute that is a reference to the scoreboard of
the game.

Formulate these relations in Python, to obtain the following code:

1 class Paddle:
2 def __init__ (self, game, index):
3 self.game = game # A paddle knows which game object it’s part of
4 self.index = index # A paddle knows its index, 0 (left) or 1 (right)
5

CHAPTER 5. OBJECTS AND THE REAL WORLD 23

6 class Ball:
7 def __init__ (self, game):
8 self.game = game # A ball knows which game object it’s part of
9

10 class Scoreboard:
11 def __init__ (self, game):
12 self.game = game # A scoreboard knows which game object it’s part of
13

14 class Game:
15 def __init__ (self):
16 self.paddles = [Paddle (self, index) for index in range (2)] # Pass game as parameter self
17 self.ball = Ball (self)
18 self.scoreboard = Scoreboard (self)
19

20 game = Game () # Create game, which will in turn create its paddles, ball and scoreboard

Listing 5.2: pong/pong2.py

Take your time to study listing 5.2. Make sure you understand each and every line of it before proceeding. Run
it to make sure it is a again a valid Python program, even though it doesn't yet do anything. After every step we
take, the intermediate result should be a valid Python program. Check that.

TIP: Use this approach also with your own programs. Make sure you always have a runnable program. If you make
changes, keep the last version until the new one runs correctly. It is always easier to �nd a bug departing from
a running version than from a version that does not run at all. Regularly store versions and keep them around
forever. I've programmed the larger part of my life, but all the source code will easily �t on one memory stick.
A simple, robust way to label versions is by prepending the date and a subnumber, e.g. pong_y15m11d26_2. Of
course you can also use a version control system like GitHub but never completely rely on it, use multiple backup
strategies in parallel. Loosing hard-fought source code is very frustrating. Store backups outside your computer,
preferably in a physically separate location.

5.4 Step 2, design: Turning the domain model into a design model

Continue with step 2, adding design classes to capture commonalities in the domain classes. This is where it gets
interesting. There's no single recipe to do this properly. Be prepared to retrace your steps and explore alternative
solutions. Raising the bar here pays o� manifold once you go to step 3.

In this case the design classes (as opposed to domain classes) Attribute and class Sprite are added. The term
'attribute' used here has nothing to do with programming. Things you need for a game or sport are called its
attributes in everyday language. The term 'sprite' on the other hand, is a programming term. A sprite a small
moving object on the screen.

1 class Attribute: # Attribute in the gaming sense of the word, rather than of an object
2 def __init__ (self, game):
3 self.game = game # Done in a central place now
4 self.game.attributes.append (self) # Insert each attribute into a list held by the game
5

6 class Sprite (Attribute): # Here, a sprite is an recangularly shaped attribute that can move
7 def __init__ (self, game, width, height):
8 self.width = width
9 self.height = height

10 Attribute.__init__ (self, game) # Call parent constructor to set game attribute
11

12 class Paddle (Sprite):
13 width = 10 # Constants are defined per class, rather than per individual object
14 height = 100 # since they are the same for all objects of that class
15 # They are defined BEFORE the __init__, not INSIDE it
16 def __init__ (self, game, index):
17 self.index = index # Paddle knows its player index, 0 == left, 1 == right

CHAPTER 5. OBJECTS AND THE REAL WORLD 24

18 Sprite.__init__ (self, game, self.width, self.height)
19

20 class Ball (Sprite):
21 side = 8
22

23 def __init__ (self, game):
24 Sprite.__init__ (self, game, self.side, self.side)
25

26 class Scoreboard (Attribute): # The scoreboard doesn’t move, so it’s an attribute but not a sprite
27 pass
28

29 class Game:
30 def __init__ (self):
31 self.attributes = [] # All attributes will insert themselves into this polymorphic list
32 self.paddles = [Paddle (self, index) for index in range (2)] # Pass game as parameter self
33 self.ball = Ball (self)
34 self.scoreboard = Scoreboard (self)
35

36 game = Game () # Create and run game

Listing 5.3: pong/pong3.py

While this program starts to really look like something, still it doesn't do anything. To make it work we'll use
facilities from the Pyglet library. Pyglet has a Label class that can be used to draw the scoreboard and it has a
Sprite class of its own, pyglet.sprite.Sprite, to animate our sprites. We'll put a pygletSprite attribute of that class
into our own Sprite class, to add 'sprity' behaviour to it. And we'll put several Pyglet.text.Label instances in our
Scoreboard class, so that it can indeed show scores.

But �rst we take a high-level look. It may seem that continuously repeating the the following steps would be
su�cient:

1. Compute the position of the paddles and the ball from the keyboard input, their previous position, their
velocity and the elapsed time.

2. Check for collisions between ball, paddles and walls and adapt the ball and paddle velocity and position to
these collisions.

But when these three steps are executed sequentially, a problem occurs. Pyglet sprites have an x and a y coordinate.
As soon as these coordinates are set, the sprite can be shown at that location. 'Can be', because we have no
control over exactly when a sprite will be shown on the screen. The process that actually displays the sprites is
asynchroneous. This means that it runs in parallel with our own code, displaying sprites at unexpected moments. So
it may very well be that a sprite is drawn after step 1, when the position has not yet been corrected for collisions.
This may result in the ball brie�y �ying right through the paddles. To prevent this, repeat the following steps
instead:

1. predict : Compute the predicted velocity and position of the paddles and the ball from the keyboard input,
their previous position and velocity and the elapsed time, but store these new values in the vX, vY, x and
y attributes of our own Sprite instances. Do not yet overwrite the x and y attributes of the pygletSprite
attributes of our Sprite instances.

2. interact : Check for collisions between ball, paddles and walls and adapt the ball and paddle velocity and
position to these collisions, correcting the values of the vX, vY, x and y attributes of our sprites.

3. commit : After all corrections have been done, copy x and y from each Sprite instance to its pygletSprite
attribute, to be rendered to the screen by Pyglet.

Before entering the predict, interact, commit cycle, it must be possible to reset the game attributes: paddles and
ball in start position, score 0 - 0. All of this is incorporated in the next version of pong:

CHAPTER 5. OBJECTS AND THE REAL WORLD 25

1 class Attribute: # Attribute in the gaming sense of the word, rather than of an object
2 def __init__ (self, game):
3 self.game = game # Done in a central place now
4 self.game.attributes.append (self) # Insert each attribute into a list held by the game
5

6 # ============ Standard interface starts here
7

8 def reset (self):
9 pass

10

11 def predict (self):
12 pass
13

14 def interact (self):
15 pass
16

17 def commit (self):
18 pass
19

20 # ============ Standard interface ends here
21

22 class Sprite (Attribute): # Here, a sprite is an rectangularly shaped attribute that can move
23 def __init__ (self, game, width, height):
24 self.width = width
25 self.height = height
26 Attribute.__init__ (self, game) # Call parent constructor to set game attribute
27

28 class Paddle (Sprite):
29 width = 10 # Constants are defined per class, rather than per individual object
30 height = 100 # since they are the same for all objects of that class
31 # They are defined BEFORE the __init__, not INSIDE it
32 def __init__ (self, game, index):
33 self.index = index # Paddle knows its player index, 0 == left, 1 == right
34 Sprite.__init__ (self, game, self.width, self.height)
35

36 class Ball (Sprite):
37 side = 8
38

39 def __init__ (self, game):
40 Sprite.__init__ (self, game, self.side, self.side)
41

42 class Scoreboard (Attribute): # The scoreboard doesn’t move, so it’s an attribute but not a sprite
43 pass
44

45 class Game:
46 def __init__ (self):
47 self.attributes = [] # All attributes will insert themselves into this polymorphic list
48

49 self.paddles = [Paddle (self, index) for index in range (2)]
50 self.ball = Ball (self)
51 self.scoreboard = Scoreboard (self)
52

53 for attribute in self.attributes:
54 attribute.reset ()
55

56 def update (self): # To be called cyclically by game engine
57 for attribute in self.attributes: # Compute predicted values
58 attribute.predict ()
59

60 for attribute in self.attributes: # Correct values for bouncing and scoring
61 attribute.interact ()
62

CHAPTER 5. OBJECTS AND THE REAL WORLD 26

63 for attribute in self.attributes: # Commit them to game engine for display
64 attribute.commit ()
65

66 game = Game () # Create and run game

Listing 5.4: pong/pong4.py

The methods reset, interact, cycle and commit constitute the interface inherited by all subclasses of class Attribute.
Since all attributes have the same interface functions, these functions can be called in a uniform way by looping
over the attributes list of the Game instance, as can be seen in line 53 - 64 of listing 5.4. Completing step 2, we
have now set up the complete program structure without any reference to the Pyglet library.

Figure 5.1: Class diagram of pong4.py, showing inheritance

5.5 Step 3, programming: Working out program logic and laying the
connection with Pyglet

Now that the overall program structure stands, we will proceed with step 3, programming, by adding speci�c im-
plementations of the reset, interact, cycle and commit functions to the classes derived from Attribute, to account
for keyboard interaction, motion and collisions As can be seen in the listings, e.g. pyglet.sprite.Sprite and Py-
glet.text.Label instances are added, laying the connection with the Pyglet library. You'll �nd the details about the
elements taken from Pyglet in its documentation.

A very important point is that the overall program structure doesn't change much during step 3. If you understood
listing 5.4, you are in a good position to gain understanding of listing 5.5, guided by this overall structure. The
activity of designing largely boiled down to establishing the overall program structure. After that, �lling in the
details becomes doable, because everything has its natural place in this structure. The result below is a typical, be
it small, Object Oriented application. Study listing 5.5 carefully and experiment with it, making small changes and
running the program to see what the e�ect is.

1 import math
2 import random
3 import inspect
4

5 import pyglet
6 from pyglet.gl import *
7

8 orthoWidth = 1000
9 orthoHeight = 750

10 fieldHeight = 650
11

12 class Attribute: # Attribute in the gaming sense of the word, rather than of an object
13 def __init__ (self, game):
14 self.game = game # Attribute knows game it’s part of

CHAPTER 5. OBJECTS AND THE REAL WORLD 27

15 self.game.attributes.append (self) # Game knows all its attributes
16 self.install () # Put in place graphical representation of attribute
17 self.reset () # Reset attribute to start position
18

19 def reset (self): # Restore starting positions or score, then commit to Pyglet
20 self.commit () # Nothing to restore for the Attribute base class
21

22 def predict (self):
23 pass
24

25 def interact (self):
26 pass
27

28 def commit (self):
29 pass
30

31 class Sprite (Attribute): # Here, a sprite is an attribute that can move
32 def __init__ (self, game, width, height):
33 self.width = width
34 self.height = height
35 Attribute.__init__ (self, game)
36

37 def install (self): # The sprite holds a pygletSprite, that pyglet can display
38 image = pyglet.image.create (
39 self.width,
40 self.height,
41 pyglet.image.SolidColorImagePattern ((255, 255, 255, 255)) # RGBA
42)
43

44 image.anchor_x = self.width // 2 # Middle of image is reference point
45 image.anchor_y = self.height // 2
46

47 self.pygletSprite = pyglet.sprite.Sprite (image, 0, 0, batch = self.game.batch)
48

49 def reset (self, vX = 0, vY = 0, x = orthoWidth // 2, y = fieldHeight // 2):
50 self.vX = vX # Speed
51 self.vY = vY
52

53 self.x = x # Predicted position, can be commit, no bouncing initially
54 self.y = y
55

56 Attribute.reset (self)
57

58 def predict (self): # Predict position, do not yet commit, bouncing may alter it
59 self.x += self.vX * self.game.deltaT
60 self.y += self.vY * self.game.deltaT
61

62 def commit (self): # Update pygletSprite for asynch draw
63 self.pygletSprite.x = self.x
64 self.pygletSprite.y = self.y
65

66 class Paddle (Sprite):
67 margin = 30 # Distance of paddles from walls
68 width = 10
69 height = 100
70 speed = 400 # / s
71

72 def __init__ (self, game, index):
73 self.index = index # Paddle knows its player index, 0 == left, 1 == right
74 Sprite.__init__ (self, game, self.width, self.height)
75

76 def reset (self): # Put paddle in rest position, dependent on player index

CHAPTER 5. OBJECTS AND THE REAL WORLD 28

77 Sprite.reset (
78 self,
79 x = orthoWidth - self.margin if self.index else self.margin,
80 y = fieldHeight // 2
81)
82

83 def predict (self): # Let paddle react on keys
84 self.vY = 0
85

86 if self.index: # Right player
87 if self.game.keymap [pyglet.window.key.K]: # Letter K pressed
88 self.vY = self.speed
89 elif self.game.keymap [pyglet.window.key.M]:
90 self.vY = -self.speed
91 else: # Left player
92 if self.game.keymap [pyglet.window.key.A]:
93 self.vY = self.speed
94 elif self.game.keymap [pyglet.window.key.Z]:
95 self.vY = -self.speed
96

97 Sprite.predict (self) # Do not yet commit, paddle may bounce with walls
98

99 def interact (self): # Paddles and ball assumed infinitely thin
100 # Paddle touches wall
101 self.y = max (self.height / 2, min (self.y, fieldHeight - self.height / 2))
102

103 # Paddle hits ball
104 if (
105 (self.y - self.height // 2) < self.game.ball.y < (self.y + self.height // 2)
106 and (
107 (self.index == 0 and self.game.ball.x < self.x) # On or behind left paddle
108 or
109 (self.index == 1 and self.game.ball.x > self.x) # On or behind right paddle
110)
111):
112 self.game.ball.x = self.x # Ball may have gone too far already
113 self.game.ball.vX = -self.game.ball.vX # Bounce on paddle
114

115 speedUp = 1 + 0.5 * (1 - abs (self.game.ball.y - self.y) / (self.height // 2)) ** 2
116 self.game.ball.vX *= speedUp # Speed will increase more if paddle near centre
117 self.game.ball.vY *= speedUp
118

119

120 class Ball (Sprite):
121 side = 8
122 speed = 300 # / s
123

124 def __init__ (self, game):
125 Sprite.__init__ (self, game, self.side, self.side)
126

127 def reset (self): # Launch according to service direction with random angle offset from horizontal
128 angle = (
129 self.game.serviceIndex * math.pi # Service direction
130 +
131 random.choice ((-1, 1)) * random.random () * math.atan (fieldHeight / orthoWidth)
132)
133

134 Sprite.reset (
135 self,
136 vX = self.speed * math.cos (angle),
137 vY = self.speed * math.sin (angle)
138)

CHAPTER 5. OBJECTS AND THE REAL WORLD 29

139

140 def predict (self):
141 Sprite.predict (self) # Integrate velocity to position
142

143 if self.x < 0: # If out on left side
144 self.game.scored (1) # Right player scored
145 elif self.x > orthoWidth:
146 self.game.scored (0)
147

148 if self.y > fieldHeight: # If it hit top wall
149 self.y = fieldHeight # It may have gone too far already
150 self.vY = -self.vY # Bounce
151 elif self.y < 0:
152 self.y = 0
153 self.vY = -self.vY
154

155 class Scoreboard (Attribute):
156 nameShift = 75
157 scoreShift = 25
158

159 def install (self): # Graphical representation of scoreboard are four labels and a separator line
160 def defineLabel (text, x, y):
161 return pyglet.text.Label (
162 text,
163 font_name = ’Arial’, font_size = 24,
164 x = x, y = y,
165 anchor_x = ’center’, anchor_y = ’center’,
166 batch = self.game.batch
167)
168

169 defineLabel (’Player AZ’, 1 * orthoWidth // 4, fieldHeight + self.nameShift) # Player name
170 defineLabel (’Player KM’, 3 * orthoWidth // 4, fieldHeight + self.nameShift)
171

172 self.playerLabels = (
173 defineLabel (’000’, 1 * orthoWidth // 4, fieldHeight + self.scoreShift), # Player score
174 defineLabel (’000’, 3 * orthoWidth // 4, fieldHeight + self.scoreShift)
175)
176

177 self.game.batch.add (2, GL_LINES, None, (’v2i’, (0, fieldHeight, orthoWidth, fieldHeight))) # Line
178

179 def increment (self, playerIndex):
180 self.scores [playerIndex] += 1
181

182 def reset (self):
183 self.scores = [0, 0]
184 Attribute.reset (self) # Only does a commit here
185

186 def commit (self): # Committing labels is adapting their texts
187 for playerLabel, score in zip (self.playerLabels, self.scores):
188 playerLabel.text = ’{}’.format (score)
189

190 class Game:
191 def __init__ (self):
192 self.batch = pyglet.graphics.Batch () # Graphical reprentations insert themselves for batch drawing
193

194 self.deltaT = 0 # Elementary timestep of simulation
195 self.serviceIndex = random.choice ((0, 1)) # Index of player that has initial service
196 self.pause = True # Start game in paused state
197

198 self.attributes = [] # All attributes will insert themselves here
199 self.paddles = [Paddle (self, index) for index in range (2)] # Pass game as parameter self
200 self.ball = Ball (self)

CHAPTER 5. OBJECTS AND THE REAL WORLD 30

201 self.scoreboard = Scoreboard (self)
202

203 self.window = pyglet.window.Window (# Main window
204 640, 480, resizable = True, visible = False, caption = "Pong"
205)
206

207 self.keymap = pyglet.window.key.KeyStateHandler () # Create keymap
208 self.window.push_handlers (self.keymap) # Install it as a handler
209

210 self.window.on_draw = self.draw # Install draw callback, will be called asynch
211 self.window.on_resize = self.resize # Install resize callback, will be called if resized
212

213 self.window.set_location (# Middle of the screen that it happens to be on
214 (self.window.screen.width - self.window.width) // 2,
215 (self.window.screen.height - self.window.height) // 2
216)
217

218 self.window.clear ()
219 self.window.flip () # Copy drawing buffer to window
220 self.window.set_visible (True) # Show window once its contents are OK
221

222 pyglet.clock.schedule_interval (self.update, 1/60.) # Install update callback to be called 60 times per s
223 pyglet.app.run () # Start pyglet engine
224

225 def update (self, deltaT): # Note that update and draw are not synchronized
226 self.deltaT = deltaT # Actual deltaT may vary, depending on processor load
227

228 if self.pause: # If in paused state
229 if self.keymap [pyglet.window.key.SPACE]: # If SPACEBAR hit
230 self.pause = False # Start playing
231 elif self.keymap [pyglet.window.key.ENTER]: # Else if ENTER hit
232 self.scoreboard.reset () # Reset score
233 elif self.keymap [pyglet.window.key.ESCAPE]: # Else if ESC hit
234 self.exit () # End game
235

236 else: # Else, so if in active state
237 for attribute in self.attributes: # Compute predicted values
238 attribute.predict ()
239

240 for attribute in self.attributes: # Correct values for bouncing and scoring
241 attribute.interact ()
242

243 for attribute in self.attributes: # Commit them to pyglet for display
244 attribute.commit ()
245

246 def scored (self, playerIndex): # Player has scored
247 self.scoreboard.increment (playerIndex) # Increment player’s points
248 self.serviceIndex = 1 - playerIndex # Grant service to the unlucky player
249

250 for paddle in self.paddles: # Put paddles in rest position
251 paddle.reset ()
252

253 self.ball.reset () # Put ball in rest position
254 self.pause = True # Wait for next round
255

256 def draw (self):
257 self.window.clear ()
258 self.batch.draw () # All attributes added their graphical representation to the batch
259

260 def resize (self, width, height):
261 glViewport (0, 0, width, height) # Tell openGL window size
262

CHAPTER 5. OBJECTS AND THE REAL WORLD 31

263 glMatrixMode (GL_PROJECTION) # Work with projection matrix
264 glLoadIdentity () # Start with identity matrix
265 glOrtho (0, orthoWidth, 0, orthoHeight, -1, 1) # Adapt it to orthographic projection
266

267 glMatrixMode (GL_MODELVIEW) # Work with model matrix
268 glLoadIdentity () # No transforms
269

270 return pyglet.event.EVENT_HANDLED # Block default event handler
271

272 game = Game () # Create and run game

Listing 5.5: pong/pong.py

TIP: There's some more wisdom to be derived from listing 5.5. Note how constants like orthoWidth on line 8 and
margin on line 67 are used. The use of a constant in those cases is justi�ed according to the DRY principle. If two
or more numbers are always identical, use a named constant for them, so you only have to make changes in one
place if their value changes. But the window dimensions on line 203, 640 x 480 pixels, are only used there. Using
named constants in this case has no bene�ts, unless one wants to de�ne all such values in one central place.

Chapter 6

Design patterns

6.1 The solution principles behind your source code

A design pattern is a solution principle that can be used over and over again in different, but

comparable, situations.

So a design pattern is not a piece of code, but rather the solution principle behind it. Still, Python code can be
used to clarify design patterns by example. Part of learning how to design software is to recognize general patterns
in your own code and have them at hand as a kind of language independent toolbox, growing with experience.
The predict, interact, commit solution used in the Pong example is such a design pattern. It can be used in many
di�erent games and simulations and in any programming language. One of the reasons to always keep the source
code of past projects at hand, is because it contains your personal toolbox of design patterns. I regularly �nd myself
looking up solutions for certain situations that I came up with ten to twenty years ago. It helps me to explicitly
notice them and give them a name: ticked-and-slip protocol, event driven evaluation nodes (eden) and self inserter.
There are some very well known design patterns, going by names like observer, facade, bridge and abstract factory.
These patterns are rather general but also rather crude. They all have many variations and re�nements, sometimes
with di�erent names. The observer pattern has a variation called publisher-subscriber and another one called event
listener. It is worth while to look at a few of these widespread design patterns, since they are a useful source of
ideas if you have not yet written that much code yourself.

6.2 The Observer pattern

6.2.1 Example situation

We want to build the game of Tic Tac Toe, that's the one where you try to get three noughts or crosses on a row.
But we want to have two views of the playing �eld. The �rst one is an alphanumerical view, showing a nought as
the letter O and a cross as the letter X. The second one is a binary view, shown a nought as the digit 0 and a cross
ast the digit 1. The two views have to be kept in sync. A naive strategy would be to let the game logic update
both views by writing O's and X'es to the one and 0's and 1's to the other. For this trivial example that would be
OK. But in general it is undesirable that the game logic should know how to update a certain

type of view. The number of possible ways to view the game state is endless, as is the number of instances of
each type of view.

6.2.2 Solution principle

Rather the game logic should just notify all views that something has changed. The views should then

know how to update themselves, pulling out the relevant information from the game state, and display it any
way they think �t, from 0's and 1's on a terminal to shiny balls and cubes in a graphics window, or perhaps boops
and beeps from a loudspeaker. Lets elaborate this solution principle in a class diagram:

32

CHAPTER 6. DESIGN PATTERNS 33

Figure 6.1: Tic Tac Toe Observer example

TicTacToeSubject contains the game logic, altering the game state with each move. TicTacToeSubject is a special-
ization of the Subject class, embodies one halve of the Observer pattern. Subjects are able to attach observers to
themselves by placing them into an observers list and storing a back reference in subject attribute of the observer
as well. They then can notify their observers of any changes by means of their notifyObservers method, that will
call the update method on each observer.

Class Observer embodies the other halve of the Observer pattern. The Observer class has an update method. It
is just there to de�ne the interface, not to do anything useful. Such a method is called abstract, and its name is
italicized in the diagram. Having at least one abstract method makes the whole Observer class abstract, since no
fully functional objects can be instantiated from it. So the name of the Observer class is italicized as well.

Class TicTacToeObserver inherits from Observer. Its update method reads the state from the TicTacToeSubject
and displays it. It isn't called directly on a TicTacToeObserver, but on an AlphaObserver or a BinObserver that
inherit this method, so it uses the symbols of one of these descendant classes.

6.2.3 Example code

TIP: The class diagram showed in broad lines how the Tic Tac Toe example works. If you use diagrams like that,
keep them simple. The right place for details is properly commented source code. Avoid complicated diagramming
tools, that subvert freedom of expression by enforcing all kinds of strickt rules. Diagrams are only there to help
imagination a bit.

Having understood the class diagram, you're now ready for the real thing: Use the force, read the source!

1 class Observer:
2 def update (self): # Only here to clarify the interface
3 raise Exception (’Abstract method called: Observer.update’)

CHAPTER 6. DESIGN PATTERNS 34

4 # Google for ’Python’ and ’exception’
5 class Subject:
6 def __init__ (self):
7 self.observers = []
8

9 def attach (self, observer):
10 self.observers.append (observer) # Forward link to observers
11 observer.subject = self # Backlink from observer to subject
12 observer.update () # Get new observer up to date
13

14 def detach (self, observer):
15 self.observers.remove (observer)
16

17 def notifyObservers (self):
18 for observer in self.observers:
19 observer.update ()
20

21 class TicTacToeObserver (Observer):
22 def update (self):
23 print (’\n’.join ([# Google for ’Python’ and ’join’
24 ’ ’.join ([# and also for ’nested list comprehensions’
25 self.symbols [value] # Use common sense and perseverance
26 for value in row # to discover what happens here
27]) # Write a small test program to
28 for row in self.subject.state # experiment with code like this
29]), ’\n’) # Try the same without list comprehensions
30

31 class AlphaObserver (TicTacToeObserver):
32 symbols = (’.’, ’O’, ’X’) # Inherited update will use these symbols
33

34 class BinObserver (TicTacToeObserver):
35 symbols = (’.’, ’0’, ’1’) # Inherited update will use these symbols
36

37 class TicTacToeSubject (Subject):
38 def __init__ (self):
39 Subject.__init__ (self)
40

41 self.state = [# Initialize with 0’s
42 [0 for column in range (3)] # 0 means empty field, 1 means nought, 2 means cross
43 for row in range (3) # Nested list comprehensions again
44] # Try to reformulate without list comprehensions
45

46 def play (self):
47 even = False # The odd player starts, the even player is next
48 while True:
49 print (’X1’ if even else ’O0’, ’player’)
50 rowKey = input (’Row (q = quit):’) # Variable rowKey will contain a string of characters
51 # rather than an integer number, so e.g. ’3’ rather than 3
52 if rowKey == ’q’: # You can’t calculate with strings, only with numbers.
53 break
54

55 columnKey = input (’Column:’)
56 self.state [int (rowKey) - 1][int (columnKey) - 1] = 2 if even else 1 # Convert to integers
57 even = not even # It’s the other player’s turn now
58 self.notifyObservers () # Let the views know something has changed
59

60 ticTacToeSubject = TicTacToeSubject () # Create the game
61

62 ticTacToeSubject.attach (AlphaObserver ()) # Attach the observers
63 ticTacToeSubject.attach (BinObserver ())
64

CHAPTER 6. DESIGN PATTERNS 35

65 ticTacToeSubject.play () # Start playing

Listing 6.1: patterns/observer.py

6.3 The Adapter pattern

6.3.1 Example situation

This example is about a tiny part of a control for an Automated Stacking Crane or ASC. ASC's store and retrieve
containers that are kept in stock by even thousands in the so called stacking area of a container terminal. All ASC's
together are controlled by the so called Movement Planner. The task of the Movement Planner to plan for e�cient
storage and retrieval of containers, e.g. keeping containers that have to leave �rst on top of the stacks or or put
interchangeable containers on top of each other. The Movement Planner works with an elementary displacement
from A to B called a move. The cranes, however, works with so called get and put orders. To move a container
from A to B it has to �rst receive a get order, to pick it up at A, and then a put order to put it down at B. So
there's a mismatch between how the Movement Planner requests a displacement (move interface) and how the ASC
expects to receive it (get and put interface). Since there's a mismatch between these two interfaces, what's needed
is an adaptor.

6.3.2 Solution principle

Adaptors come in two kinds, the �rst one being the Object Adapter:

Figure 6.2: ASC Object Adapter example

The interface of class RouteSegmenter consists of the move method, as required by the MovementPlanner. The
AscSequenceControl has an interface consisting of the get and put methods. Class AscRouteSegmenter inherits its

CHAPTER 6. DESIGN PATTERNS 36

interface from RouteSegmenter. It contains an attribute of type AscSequenceControl and it implements its move
interface method by calling get and put upon this attribute. The get and put methods themselves are not added to
the interface. Moreover it is possible for an AscRouteSegmenter to contain multiple instances of AscSequenceControl.

The other kind of adapter is the Class Adapter:

Figure 6.3: ASC Class Adaper example

Class AscRouteSegmenter now inherits from both the RouteSegmenter interface class and from the AscSequence-
Control class that contains the implementations of get and put. Interface method move now calls these two inherited
methods, not via an attribute but directly. Note that the AscRouteSegmenter does not contain an AscSequence-
Control in that case, it is an AscSequenceControl. This means that its interface contains move as well as get and
put. And there can't be multiple instances of AscSequenceControl embedded in one AscRouteSegmenter.

6.3.3 Example code

The code of the object adaptor version is:

1 class MovementPlanner:
2 def __init__ (self, routeSegmenter):
3 self.routeSegmenter = routeSegmenter
4

5 def batch (self, *locationPairs): # * means convert parameters to list
6 print ()
7 print (’Starting moves’)
8 print ()
9 for locationPair in locationPairs:

10 self.routeSegmenter.move (locationPair)
11 print (’Moves ready’)
12

CHAPTER 6. DESIGN PATTERNS 37

13 class RouteSegmenter:
14 def move (self, locationPair):
15 raise Exception (’Abstract method called: RouteSegmenter.move’)
16

17 class AscSequenceControl:
18 def get (self, location):
19 print (’Picked up container at location:’, location)
20

21 def put (self, location):
22 print (’Put down container at location:’, location)
23

24 class AscRouteSegmenter (RouteSegmenter):
25 def __init__ (self, ascSequenceControl):
26 self.ascSequenceControl = ascSequenceControl
27

28 def move (self, locationPair):
29 self.ascSequenceControl.get (locationPair [0])
30 self.ascSequenceControl.put (locationPair [1])
31 print ()
32

33 MovementPlanner (AscRouteSegmenter (AscSequenceControl ())) .batch (
34 (’3A3’, ’2K1’),
35 (’3A2’, ’2K2’),
36 (’2C1’, ’9M3’),
37 (’9R4’, ’1A1’),
38 (’9R3’, ’1A2’)
39)

Listing 6.2: patterns/objectAdapter.py

The code of the Class Adapter is slightly more compact:

1 class MovementPlanner:
2 def __init__ (self, routeSegmenter):
3 self.routeSegmenter = routeSegmenter
4

5 def batch (self, *locationPairs): # * means convert parameters to list
6 print ()
7 print (’Starting moves’)
8 print ()
9 for locationPair in locationPairs:

10 self.routeSegmenter.move (locationPair)
11 print (’Moves ready’)
12

13 class RouteSegmenter:
14 def move (self, locationPair):
15 raise Exception (’Abstract method called: RouteSegmenter.move’)
16

17 class AscSequenceControl:
18 def get (self, location):
19 print (’Picked up container at location:’, location)
20

21 def put (self, location):
22 print (’Put down container at location:’, location)
23

24 class AscRouteSegmenter (RouteSegmenter, AscSequenceControl):
25 def move (self, locationPair):
26 self.get (locationPair [0])
27 self.put (locationPair [1])
28 print ()
29

30 MovementPlanner (AscRouteSegmenter ()) .batch (
31 (’3A3’, ’2K1’),

CHAPTER 6. DESIGN PATTERNS 38

32 (’3A2’, ’2K2’),
33 (’2C1’, ’9M3’),
34 (’9R4’, ’1A1’),
35 (’9R3’, ’1A2’)
36)

Listing 6.3: patterns/classAdapter.py

Nevertheless, in most cases use of the Object Adaptor is to be preferred for two reasons:

1. In general, it is desirable if interfaces are stable and thin. Stable means that they do not have to be changed
with every minor change of the design. Standardization only reduces costs if you can rely on standards not
constantly changing. Thin means that there are not too many methods or attributes that are part of the
interface. Having a lot of methods or attributes in the interface of a class entails that some code elsewhere in the
program may be dependent upon the presence of all those methods or attributes. In our class adapter example
the get and put of AscSequenceControl are inherited and become part of the interface of AscRouteSegmenter.
As a consequence of this, the amount of work involved in changing the interface of AscSequenceControl (get
and put) could be unnecessarly high, since not only code that uses AscSequenceControl directly but also code
that uses AscRouteSegmenter would have to be changed.

2. The possibility to have multiple instances of AscSequenceControl embedded in one AscRouteSegmenter con-
tributes to the �exibility of the design.

BACKGROUND: A common misunderstanding is that encapsulation is about hiding attribute data by only access-
ing them via methods that store or retrieve them. But the main bene�t of encapsulation is more general:

Encapsulation is about hiding design decisions rather than about data hiding.

Hiding a design decision means that changing this decision has only local impact. This contributes to the �exibility
of the design, since the costs of change are limited. Changing an attribute indeed boils down to changing a design
decision, but so does changing a method. So striving for thin interfaces is not only about hiding attributes but
also about hiding methods. Hiding data may have extra bene�ts, apart from hiding design decissions. That's what
section 6.4 is about.

6.4 The Property pattern

6.4.1 Example situation

Suppose we have a Circle class which has the attributes radius, perimeter and area in its interface. It seems that the
'thin interfaces' principle would indicate that e.g. only the radius should be present in the interface. But since any
real world circle also has a perimeter and an area, no generality is sacri�ced by adding them to the interface. And
by adding them, code that uses Circle could directly use perimeter and area in addition to radius. Storing them
as separate attributes would unfortunately mean that they have to be kept in sync explicitly. As an alternative
to having the attributes perimeter and area, we could use methods getPerimeter and getArea to compute those
values on the �y. And we could also add methods setPerimeter and setArea, to set the radius via them. Doing
so would would result in a Circle interface consisting of radius, getPerimeter, setPerimeter, getArea and setArea.
This unnecesarily exposes the design decision that the radius is actually stored, while the perimeter and the area
are computed on the �y. Suppose that after a while, the area of the circle would turn out te be used much more
frequent than the radius. Then it would become more attractive to store the area and compute the radius and
the perimeter from that. This would lead to a changed interface of Circle, consisting of getRadius, setRadius,
getPerimeter, setPerimeter and area, so all the code using Circle would have to be adapted. We'd like to avoid
that expensive overall changes like that. How to proceed?

6.4.2 Solution principle

One way to go, is to add a getter and setter to the attribute itself as well, right from the start. The interface of
Circle would then become: getRadius, setRadius, getPerimeter, setPerimeter getArea, setArea. The decision which

CHAPTER 6. DESIGN PATTERNS 39

value is actually stored and which other two are computed from it is then hidden. This means that we're free to
switch from storing _radius to storing _perimeter or _area at any time. Remember that prepending _ to an
attribute or method means that it does not belong to the interface. That is important here, because if people
started to directly access _radius, storing _area instead would still break their code, requiring extra work.

BACKGROUND: Some of the practical thinking behind Python is revealed by the fact that refraining from direct
use of private attributes or methods (the ones that start with a single _) is left to free will.

There may be very good reasons to directly use a private attribute or method afterall, just like there may be very
good reasons to break into your own car if you locked in the keys. Computer programs live in the real world, not
in an ideal one.

An attribute that is meant to be only accessed via a getter or a setter is called a property. Python supports
properties in an elegant way. Rather than having the bulky getRadius, setRadius, getPerimeter, setPerimeter,
getArea, setArea interface, that requires the design decision to use a propery to be taken up front, since all external
code depends upon this interface, it allows you to maintain the original radius, perimeter, area interface while still
using properties.

Without this facility, one might indeed be inclined to use getters and setters for each attribute, just to be prepared
for the unknown. With it, one can start out with simple attributes and change them to properties whenever needed,
without impacting the rest of the design. It is important to make a clear distinction here: Accessing attributes via
getters and setters is called the Property pattern. The fact that Python has transparent way to do so is a bonus,
but stricktly spoken not part of the pattern. Since you're learning Python here, we'll shamelessly bene�t of that
bonus in the example code.

6.4.3 Example code

In the �rst example, the only thing actually stored in an object of class Circle is the private _radius attribute. All
access to this attribute, including access via the methods of Circle itself, is via the associated public radius property.
Note that the getters and setters start with an _, since they are never to be called directly by code outside the
class. The interface of Circle consists of the radius, perimeter and area properties. This interface hides the design
decision on what is actually stored.

1 import math
2

3 class Circle:
4 def __init__ (self):
5 self._setRadius (0)
6

7 def _getRadius (self):
8 return self._radius
9

10 def _setRadius (self, value):
11 self._radius = value # Only the radius is actually stored!
12

13 def _getPerimeter (self):
14 return 2 * math.pi * self.radius # Use radius property
15

16 def _setPerimeter (self, value):
17 self.radius = value / (2 * math.pi) # Use radius property
18

19 def _getArea (self):
20 return math.pi * self.radius * self.radius # Use radius property
21

22 def _setArea (self, value):
23 self.radius = math.sqrt (value / math.pi) # Use radius property
24

25 radius = property (_getRadius, _setRadius)
26 perimeter = property (_getPerimeter, _setPerimeter)
27 area = property (_getArea, _setArea)

CHAPTER 6. DESIGN PATTERNS 40

28

29 # Code below, using Circle, does not depend on what is actually stored, _radius or _area
30

31 circle = Circle ()
32

33 circle.radius = 10
34 print (’radius = {}, perimeter = {}, area = {}’. format (circle.radius, circle.perimeter, circle.area))
35

36 circle.area = math.pi * 10000
37 print (’radius = {}, perimeter = {}, area = {}’. format (circle.radius, circle.perimeter, circle.area))
38

39 print (’Attributes:’, vars (circle)) # Print all ’real’ attributes, so not the properties

Listing 6.4: patterns/propertyRadius.py

In the second example, not the _radius, but the _area is stored in a private attribute. The interface of Circle still
consists of the radius, perimeter and area properties. Since the interface did not change at all, all code using Circle
doesn't have to change with respect to the previous example. This is a direct bene�t from Circle having a stable
interface, that doesn't change when _area instead of _radius is stored.

1 import math
2

3 class Circle:
4 def __init__ (self):
5 self.area = 0
6

7 def _getRadius (self):
8 return math.sqrt (self.area / math.pi) # Use area property
9

10 def _setRadius (self, value):
11 self.area = math.pi * value * value # Use area property
12

13 def _getPerimeter (self):
14 return 2 * math.pi * self.radius # Use radius property
15

16 def _setPerimeter (self, value):
17 self.radius = value / (2 * math.pi) # Use radius property
18

19 def _getArea (self):
20 return self._area # Only the area is actually stored!
21

22 def _setArea (self, value):
23 self._area = value
24

25 radius = property (_getRadius, _setRadius)
26 perimeter = property (_getPerimeter, _setPerimeter)
27 area = property (_getArea, _setArea)
28

29 # Code below, using Circle, does not depend on what is actually stored, _radius or _area
30

31 circle = Circle ()
32

33 circle.radius = 10
34 print (’radius = {}, perimeter = {}, area = {}’. format (circle.radius, circle.perimeter, circle.area))
35

36 circle.area = math.pi * 10000
37 print (’radius = {}, perimeter = {}, area = {}’. format (circle.radius, circle.perimeter, circle.area))
38

39 print (’Attributes:’, vars (circle)) # Print all ’real’ attributes, so not the properties

Listing 6.5: patterns/propertyArea.py

CHAPTER 6. DESIGN PATTERNS 41

TIP: The fact that the member functions of Circle also use radius, perimeter and area, rather than calling getters
and setters or accessing the private attribute directly, further limits the impact of design changes. One might argue
that accessing the underlying attribute (_radius or _area) directly may result in faster code. This type of so
called �peephole optimization� should be avoided if possible, since it violates the DRY principle. This makes design
changes harder, including the optimizations that really matter. As a general rule:

Don't start optimizing too early, first give priority to a clear and regular design.

This is not an invitation to be wasteful, but to avoid being �penny wise and pound foolish�. If you've de�ned a
standard interface for a class, use it, also in the class itself. O, and yes indeed, there are exceptions to any rule,
this one is no exception.

6.5 *EXTRA* The Call Chaining pattern

TIP: While the call chaining pattern itself isn't too di�cult, the example given here is complicated. It uses a lot of
special Python facilities and some clever tricks. Depending on your skills you may:

1. Skip this pattern altogether. Not much is lost if you do.

2. Super�cially skim through section 6.5.1 , study the small code blocks in section 6.5.2 thoroughly, but skip
section 6.5.3 completely.

3. Wrestle through section 6.5.3 as well.

6.5.1 Example situation

The �rst time I encountered the Call Chaining pattern was in IBM's Visual Age library in 1980. I started to use it
myself every now and then. Later on it became part of the Microsoft's LINQ. LINQ makes it possible to select data
from a collections of object in a clever way, inspired by SQL. SQL (pronunciation: sequel) or Structured Query
Language is a special purpose language to query and update data in a so called relational database, a very popular
way to store data into tables on disk.

An example of a SQL statement is:

1 SELECT name, address
2 FROM customers
3 WHERE profit > 10,000,000

Spent a few minutes reading bout SQL e.g. in Wikipedia. Don't dive to deeply, most of it will be intuitively clear.
While SQL is a language in its own right, often the need arises to have SQL statements as part of e.g. a Python
program. One way to do that is just to embed them as multi line strings (Google for Python and 'multiline strings'):

1 query = ’’’
2 SELECT name, address
3 FROM customers
4 WHERE profit > 10,000,000
5 ’’’
6

7 result = database.execute (query)

In this code fragment query is a string variable containing a piece of SQL. Python doesn't have any idea about
the meaning of this piece of SQL, but just passes the string as parameter to method execute of a Python object of
class database. That object just forwards the contents of the SQL string to a special purpose program called the
RDBMS (Relational Database Management System). The RDBMS queries the database and returns the selected
data to the execute function that in turn returns it to result. This can be done, since the RDBMS can be controlled
from C/C++ and Python in turn can communicate with C/C++ code, a.o by using something called Cython. The

CHAPTER 6. DESIGN PATTERNS 42

details are not relevant at this point and, on top of that, rather boring. An RDBMS that Python plays nice with
is SQLite, but all the others will do as well.

Another way to use SQL from Python is to have special functions in Python like SELECT, FROM and WHERE,
to do the querying. The nice thing about this approach is that these functions may be programmed in such a
way that they query Python lists rather than a real SQL database. This example gives you an idea of how that
might be done in principle. The main thing you can learn from it, is that there's no mystery involved in SQL,
or anything else that has to do with computer programming for that matter. So, we are not going to connect to
any RDBMS. Rather we'll select data from Python lists. But an interface to an RDBMS could be added. This is
exactly what Microsoft did with their LINQ tool. As with LINQ, the language we'll use (or rather, make) is not
SQL, but something that looks a lot like it, allowing constructions like:

1 result = (
2 FROM (animals) .
3 WHERE (lambda r: r.species == ’human’ and r.age > 10) .
4 SELECT (lambda r: (r.gender, r.name, r.age)) .
5 ORDER_BY (lambda r: (r.name, r.age | DESC))
6)

Here the SQL query is not a 'dead' string that doesn't mean anything to Python, it is an alive and kicking chain
of Python function calls, each of the functions able to do something useful as part of the query. The secret of this
code is in the dots at the end of the lines. It's these dots that give away the Call Chaining pattern.

6.5.2 Solution principle

The solution principle of call chaining is that each call to a function or method returns an object. From this object
in turn a method can be called, which returns another object, of which a method can be called, and so on. In the
above piece of code the FROM function returns an object of class Table. Class Table has a method WHERE, that
returns second object, holding a selection of the �rst Table object. This second object is also of class Table. Class
Table also has a method SELECT. This method again returns a Table instance. Class Table also has a method
ORDER_BY, which is called in the end, returning a string with a sorted version of the contents of the Table.

The dots were crucial because they provide the glue between the lines of SQL like code. If FROM (animals) returns
an object, then FROM (animals) .WHERE (...) is just a method call upon that object. It is the normal dot
notation for calling methods that we've used everywhere. So the essence of the pattern is that rather than writing:

1 object1 = functionA ()
2 object2 = object1.methodB ()
3 object3 = object2.methodC ()
4 object4 = object3.methodD ()
5 result = object4.methodE ()

one writes:

1 result = (
2 functionA () .
3 methodA () .
4 methodB () .
5 methodC () .
6 methodD ()
7)

Each method call relies upon the result of the previous call. It is as if the object returned by functionA is handed
through a sequence of transformation functions. With database querying each transformation acts as a �lter
narrowing down the query. But call chaining like this can also be used to e.g. transform graphical objects:

1 render (
2 getCube () .
3 stretchX (3) .
4 stretchY (4) .
5 rotateX (math.pi / 2) .

CHAPTER 6. DESIGN PATTERNS 43

6 material (shiny) .
7 light (green)
8)

The �nal stretched, rotated , illuminated object is returned to the render function, that puts it on the screen.

6.5.3 Example code

The example code uses a small selection of the many under-the-hood features that make Python such a power tool.
They will be explained in a second, heavily commented, version of the source code. But �rst traverse the bare
code criss-cross with a machete and see what you pick up from it without any explanation. Maybe the end is the
best place to start, since that's where everything comes together. Don't strive for complete understanding, just get
some intuitive sense of what this code roughly does. If some fragments are too hard, skip them. If this leads you
to skipping everything, that's completely OK.

1 import itertools
2

3 class Accessor:
4 def __init__ (self, table):
5 self.table = table
6

7 def __getattr__ (self, name):
8 return self.row [self.table.fieldDict [name]]
9

10 def __call__ (self, row):
11 self.row = row
12 return self
13

14 def FROM (*tables):
15 if len (tables) == 1:
16 return tables [0]
17 else:
18 result = TABLE (*itertools.chain (*(table.fieldNames for table in tables)))
19 result.rows = set (
20 tuple (itertools.chain (*row))
21 for row in itertools.product (*(table.rows for table in tables))
22)
23 return result
24

25 class Descending:
26 def __ror__ (self, first):
27 self.field = first
28 return self
29

30 DESC = Descending ()
31

32 def tuplize (any):
33 return any if type (any) == tuple else (any,)
34

35 class TABLE:
36 def __init__ (self, *fieldNames):
37 self.fieldNames = fieldNames
38 self.fieldDict = {fieldName: index for index, fieldName in enumerate (self.fieldNames)}
39 self.accessor = Accessor (self)
40 self.rows = set ()
41

42 def __call__ (self, **aliases):
43 result = TABLE (*(
44 (aliases [fieldName] if fieldName in aliases else fieldName)
45 for fieldName in self.fieldNames

CHAPTER 6. DESIGN PATTERNS 44

46))
47 result.rows = self.rows # Only copy reference, since nothing is changed
48 return result
49

50 def __contains__ (self, fieldOrTuple):
51 return tuplize (fieldOrTuple) in self.rows
52

53 def INSERT (self, *rows):
54 self.rows = set (rows)
55

56 def WHERE (self, function):
57 result = TABLE (*self.fieldNames)
58 result.rows = {row for row in self.rows if function (self.accessor (row))}
59 return result
60

61 def SELECT (self, function):
62 result = TABLE (*tuplize (function (self.accessor (self.fieldNames))))
63 result.rows = {tuplize (function (self.accessor (row))) for row in self.rows}
64 return result
65

66 def ORDER_BY (self, function):
67 aList = list (self.rows)
68

69 def sortParamPair (descendingOrField, index):
70 isDescending = isinstance (descendingOrField, Descending)
71 keyGetter = (
72 lambda row: tuplize (function (self.accessor (row))) [index] .field
73) if isDescending else (
74 lambda row: tuplize (function (self.accessor (row))) [index]
75)
76 return (keyGetter, isDescending)
77

78 sortParamPairs = [
79 sortParamPair (descendingOrField, index)
80 for index, descendingOrField in enumerate (
81 tuplize (function (self.accessor (self.fieldNames)))
82)
83]
84

85 aList = list (self.rows)
86 for keyGetter, isDescending in reversed (sortParamPairs):
87 aList.sort (key = keyGetter, reverse = isDescending)
88

89 return Cursor (self, aList)
90

91 class Cursor:
92 def __init__ (self, table, aList):
93 self.table = table
94 self.aList = aList
95 self.columnWidth = 15
96 self.fieldFormatString = ’{{:{}}}’.format (self.columnWidth)
97

98 def __str__ (self):
99 return ’\n’.join (

100 [’ ’.join (
101 [self.fieldFormatString.format (fieldName) for fieldName in self.table.fieldNames]
102),
103 ’ ’.join ([self.columnWidth * ’_’] * len (self.table.fieldNames))
104] +
105 [’ ’.join (self.fieldFormatString.format (field) for field in row)
106 for row in self.aList
107]

CHAPTER 6. DESIGN PATTERNS 45

108)
109

110 animals = TABLE (’species’, ’gender’, ’age’, ’name’, ’length’)
111

112 animals.INSERT (
113 (’horse’, ’male’, 15, ’henry’, 1.8),
114 (’human’, ’female’, 22, ’wilma’, 1.7),
115 (’human’, ’male’, 30, ’john’, 1.5),
116 (’human’, ’female’, 20, ’mary’, 1.9),
117 (’human’, ’male’, 26, ’robin’, 1.7),
118 (’human’, ’unknown’, 25, ’robin’, 1.8),
119 (’human’, ’female’, 27, ’robin’, 1.4),
120 (’ape’, ’female’, 5, ’benji’, 1.1)
121)
122

123 eats = TABLE (’animalSpecies’, ’plantSpecies’)
124

125 eats.INSERT (
126 (’horse’, ’gras’),
127 (’horse’, ’oats’),
128 (’human’, ’oats’),
129 (’human’, ’lettuce’),
130 (’human’, ’banana’),
131 (’ape’, ’banana’)
132)
133

134 plants = TABLE (’species’, ’length’)
135

136 plants.INSERT (
137 (’gras’, 0.3),
138 (’oats’, 0.5),
139 (’banana’, 0.2)
140)
141

142 primateFood = TABLE (’species’, ’kind’)
143

144 primateFood.INSERT (
145 (’oats’, ’wild’),
146 (’banana’, ’wild’),
147 (’banana’, ’cultivated’)
148)
149

150 adultsCursor = (
151 FROM (animals) .
152 WHERE (lambda r: r.species == ’human’ and r.age > 10) .
153 SELECT (lambda r: (r.gender, r.name, r.age)) .
154 ORDER_BY (lambda r: (r.name, r.age | DESC))
155)
156

157 print (’\n’, adultsCursor)
158

159 menu = (
160 FROM (
161 animals (species = ’aSpecies’, length = ’animalLength’),
162 eats,
163 plants (species = ’pSpecies’, length = ’plantLength’)
164) .
165 WHERE (lambda r: r.aSpecies == r.animalSpecies and r.plantSpecies == r.pSpecies) .
166 SELECT (lambda r: (r.name, r.animalSpecies, r.animalLength, r.plantSpecies, r.plantLength))
167)
168

169 menuCursor = \

CHAPTER 6. DESIGN PATTERNS 46

170 FROM (menu). \
171 ORDER_BY (lambda r: r.name)
172

173 print (’\n’, menuCursor)
174

175 primateCursor = (
176 FROM (menu) .
177 WHERE (lambda r: (r.plantSpecies, ’cultivated’) in (
178 FROM (primateFood) .
179 SELECT (lambda r: (r.species, r.kind))
180)) .
181 ORDER_BY (lambda r: r.name)
182)
183

184 print (’\n’, primateCursor)

Listing 6.6: patterns/callChaining.py

Next thing to look at is an abundantly commented version of the same code. Using comments like this is called
Literate Programming. Give it another go, carefully reading the comments. Be prepared to do some detective work.

1 import itertools
2 # Module itertools is part of the Python standard library and contains tools for iterators
3 # An iterator resembles a list, but different from a list, an iterator does not hold all of its elements
4 # It produces them on the fly, without storing them all at the same time in memory
5 # Because this sounds a bit alien, just try to follow how iterators are used here
6

7 class Accessor:
8 # Our ’database’ will consist of tables, each TABLE holding a unordered set of rows
9 # While these rows are just tuples whose components can be addressed by indices,

10 # they an also be addressed by field name, using a part of the TABLE called the field dictionary
11 # The task of an Accessor is to make this addressing by name instead of by index possible
12 # The Accessor class does this by introducing a kind of virtual attributes, one for each field name
13

14 def __init__ (self, table):
15 # Each Table will create an Accessor for itself and pass itself as parameter to its constructor
16

17 self.table = table
18 # At this point the Accessor knowns to which TABLE it belongs
19

20 def __getattr__ (self, name):
21 # Methods between starting and ending with __ are special
22 # In Python accessing anObject.anAttribute results in calling anObject.__getattr__ (’anAttribute’)
23 # By overriding (redefining) __getattr__ we make anObject.anAttribute lookup anAttribute in a special way
24

25 return self.row [self.table.fieldDict [name]]
26 # The expression self.table.fieldDict [aName] looks up the field index into the field dictionary
27 # This index is then used to access the field as self.row [aFieldIndex]
28 # But it looks like Accessor has no row attribute...
29

30 def __call__ (self, row):
31 # Overriding the __call__ special method means that objects of that class can be called as if they were functions
32 # The call anAccessor (aRow) results in the call anAccessor.__call__ (aRow)
33

34 self.row = row
35 # This call results in creating a row attribute on the fly
36

37 return self
38 # After having created a row, anAccessor returns itself
39 # Since it has a __getattr__, the call anAccessor (row) .aName results in
40 # 1. Creating the right row attribute
41 # 2. Accessing the field with name aName from that row using __getattr__

42

CHAPTER 6. DESIGN PATTERNS 47

43 def FROM (*tables):
44 # The *tables means that this function will put all its parameters into a list called tables
45

46 if len (tables) == 1:
47 # The list of tables has length one, only one table is passed in
48

49 return tables [0]
50 # Return that one table
51

52 else:
53 # The list contains more than one TABLE
54

55 result = TABLE (*itertools.chain (*(table.fieldNames for table in tables)))
56 # Merge all the lists of fieldNames of these tables into
57 # one long list of fieldNames for the resulting TABLE
58

59 result.rows = set (tuple (
60 # Step 3. Convert the resulting list of rows into an unordered set,
61 # assign it to the row set of the result TABLE
62

63 itertools.chain (*row)) for row in
64 # Step 2. For each row of the carthesian product, merge its subrows
65

66 itertools.product (*(table.rows for table in tables)
67 # Step 1. Compute the carthesian product,
68 # holding all combinations of subrows from the individual tables
69))
70 return result
71 # Return the new, merged TABLE, which is the join of the individual tables (Google for ’SQL full join’)
72

73 class Descending:
74 # Objects of this class are used as an indicator that sort order in the ORDER_BY method has to be descending
75 def __ror__ (self, first):
76 # ’reverse or’, this gives the | operator a new meaning
77 # If DESC is of class Descending, then DESC.__ror__ (firstObject) can also be written as: firstObject | DESC
78 # If it had been __or__ rather than __ror__, then DESC.__or__ (lastObject) could
79 # have been written as: DESC | lastObject
80

81 self.field = first
82 # In the process of evaluating expression firstObject | DESC, DESC.field gets value firstObject
83

84 return self
85 # So expression firstObject | DESC will return the object DESC, having an attribute firstObject
86

87 DESC = Descending ()
88

89 def tuplize (any):
90 return any if type (any) == tuple else (any,)
91 # If any is already a tuple, that tuple will be returned
92 # If any is not already a tuple, the tuple (any,), having only one component, will be returned
93 # So a single value will automatically be converted to tuple with that value as only component
94

95 class TABLE:
96 # Our ’database’ consists of tables
97

98 def __init__ (self, *fieldNames):
99 # *fieldNames means that the parameters of the constructor call will be placed in to a list

100 self.fieldNames = fieldNames
101 # This list of fieldNames is stored in the TABLE object
102

103 self.fieldDict = {fieldName: index for index, fieldName in enumerate (self.fieldNames)}
104 # The field dictionary makes it possible to look up the field index by name

CHAPTER 6. DESIGN PATTERNS 48

105 # So expression self.fieldDict (’aFieldName’) gives the index of field ’aFieldName’ in each row tuple
106

107 self.accessor = Accessor (self)
108 # The accessor object can be coupled to a row by the expression self.accessor (aRow)
109 # self.accessor.aFieldName then returns the right field of that row as explained with the Accessor class
110

111 self.rows = set ()
112 # The rows of a TABLE are unordered, so they are represented by a Python set, not by a list
113

114 def __call__ (self, **aliases):
115 # This function makes it possible to rename the fields of a ’database’ TABLE
116 #
117 # aTable (someParameters) is equivalent to aTable.__call__ (someParamters)
118 #
119 # The call aTable (fieldName1 = ’newFieldName1’, fieldName2 = ’newFieldName2’) uses named parameters
120 # Named parameters are allowed with any function or method call in Python
121 # In this case it will result in aTable.__call__ (fieldName1 = ’newFieldName1’, fieldName2 = ’newFieldName2’)
122 #
123 # The **aliases notation means that the values of the named parameters will be stored into the aliases dictionary
124 # The names of the parameters will be the keys to their values in that Python dict
125 # So e.g. aliases [’fieldName1’] will return ’newFieldName1’
126

127 result = TABLE (*(
128 (aliases [fieldName] if fieldName in aliases else fieldName)
129 for fieldName in self.fieldNames
130))
131 # The resulting table will have the aliases as field names instead of the original ones
132

133 result.rows = self.rows
134 # The contents of the new table does not change,
135

136 return result
137 # Return that new table, according to the Call Chaining pattern
138

139 def __contains__ (self, fieldOrTuple):
140 return tuplize (fieldOrTuple) in self.rows
141 # Looks up a certain tuple of field values
142 # If it’s a single value, tuplize will make it a tuple of 1 component
143

144 def INSERT (self, *rows):
145 # *rows will turn the parameters of a call to INSERT into a list called rows
146 self.rows = set (rows)
147 # This list of rows is converted to a set and assigned to the row attribute of TABLE
148

149 def WHERE (self, function):
150 result = TABLE (*self.fieldNames)
151 # An empty result TABLE with the same field names as TABLE self is created
152

153 result.rows = {row for row in self.rows if function (self.accessor (row))}
154 # Only rows for which function returns True will be inserted into the result TABLE
155

156 return result
157 # The result TABLE is returned, once again allowing Call Chaining
158

159 def SELECT (self, function):
160 result = TABLE (*tuplize (function (self.accessor (self.fieldNames))))
161 # The field names are treated as just another row
162 # The accessor turns them in to an object with attributes as explained with the Accessor class
163 # The attributes in this case will contain their own names,
164 # since this ’row’ contains the field names as fields
165 # Calling function (accessor (self.fieldNames)) will return a selected field names
166

CHAPTER 6. DESIGN PATTERNS 49

167 result.rows = {tuplize (function (self.accessor (row))) for row in self.rows}
168 # Calling function (accessor (row)) will return the selected
169 # field values matching the selected field names
170 # In this set comprehension, this selection of field values is done for all rows
171 # A set comprehension is like a list comprehension, but it produces a set instead of a list
172

173 return result
174 # Return the resulting TABLE, according to the Call Chaining pattern
175 # It fill contain only the selected field names and the matching selected fields
176

177 def ORDER_BY (self, function):
178 # The function passed to ORDER_BY can e.g. be lambda r: (r.name, r.age | DESC)
179 # This means: first sort ascending on name, and after that descending on age
180 aList = list (self.rows)
181 # Turn the set of rows into a list, since sets cannot be ordered at all
182

183 def sortParamPair (descendingOrField, index):
184 # Parameter descendingOrField will e.g. be r.name, or r.age | DESC
185 # If it’s indeed r.age | DESC, it will evaluate to the DESC object, and DESC.field have value age
186 # Look at the explanation of class Descending to understand this
187 #
188 # Parameter index will hold the field index matching the descendingOrField parameer
189 isDescending = isinstance (descendingOrField, Descending)
190 # If descendingOrField evaluates to a DESC object,
191 # sorting on field DESC.field should be done descending
192

193 keyGetter = (
194 # keyGetter should be assigned a function that returns the value of the field to sort on
195

196 lambda row:
197 # This lambda is used for a descending sort, it has to unpack the field from DESC
198 tuplize (function (
199 self.accessor (row)
200 # The attributes of the accessor objects are
201 # now the field values of this row
202 # Some may be wrapped in DESC
203))
204 # At this point we have the a tuple of field values to sort on,
205 # some wrapped in DESC
206

207 [index]
208 # At this point we have the right field from that tuple, as indicated by index
209 # but the sort is descending, so it will be wrapped in DESC
210

211 .field
212 # We unwrap it by returning DESC.field
213

214) if isDescending else (
215 # Use the lambda function above in case a DESC indicator is present,
216 # else use the one below
217

218 lambda row:
219 # This lambda is used for an ascending sort, it doesn’t have to unpack the field
220 tuplize (function (
221 self.accessor (row)
222 # The attributes of the accessor object are now the
223 # field values of this row
224))
225 # At this point we have the a tuple of field values to sort on
226

227 [index]
228 # At this point we have the right field from that tuple, as indicated by index

CHAPTER 6. DESIGN PATTERNS 50

229)
230

231 return (keyGetter, isDescending)
232 # We return the lambda function that returns the right field,
233 # and wether or not the sort on that field is descending
234 # This tuple is called the sort parameter pair
235

236 sortParamPairs = [
237 sortParamPair (descendingOrField, index)
238 for index, descendingOrField in enumerate (
239 tuplize (function (
240 self.accessor (self.fieldNames)
241 # The attributes of the accessor object are now the field names,
242 # some of them wrapped in DESC
243))
244 # At this point we have a tuple of field names, some wrapped in DESC
245)
246 # We now pair each field name, some wrapped in DESC, with its index
247]
248

249 aList = list (self.rows)
250 for keyGetter, isDescending in reversed (sortParamPairs):
251 # Going through the keys in the right order
252 aList.sort (key = keyGetter, reverse = isDescending)
253 # Sort the list on that keys successively
254

255 return Cursor (self, aList)
256 # Return a Cursor for that list
257 # A Cursor is a ordered list of rows
258 # It has a multiline string representation featuring a header line and then a line for each row
259

260 class Cursor:
261 def __init__ (self, table, aList):
262 self.table = table
263 self.aList = aList
264 self.columnWidth = 15
265 self.fieldFormatString = ’{{:{}}}’.format (self.columnWidth)
266

267 def __str__ (self):
268 # The __str__ special function of a class lays down how objects of this
269 # class are converted to strings.
270 # Such conversion e.g. takes place of the object is printed
271

272 return ’\n’.join (
273 # Glue the header and the rows together with linefeeds in between,
274 # so each will be on its own line
275 [’ ’.join (
276 [self.fieldFormatString.format (fieldName) for fieldName in self.table.fieldNames]
277),
278 # Header line containing field names, glued together with blanks
279

280 ’ ’.join ([self.columnWidth * ’_’] * len (self.table.fieldNames))
281 # Line of underscores under each field name to separate them from the rows,
282 # glued together with blanks
283] +
284 [’ ’.join (self.fieldFormatString.format (field) for field in row)
285 for row in self.aList
286 # Many lines of field values glued together with blanks, one line for each row
287]
288)
289

290 animals = TABLE (’species’, ’gender’, ’age’, ’name’, ’length’)

CHAPTER 6. DESIGN PATTERNS 51

291 # Create animals table, specifying field names
292

293 animals.INSERT (
294 (’horse’, ’male’, 15, ’henry’, 1.8),
295 (’human’, ’female’, 22, ’wilma’, 1.7),
296 (’human’, ’male’, 30, ’john’, 1.5),
297 (’human’, ’female’, 20, ’mary’, 1.9),
298 (’human’, ’male’, 26, ’robin’, 1.7),
299 (’human’, ’unknown’, 25, ’robin’, 1.8),
300 (’human’, ’female’, 27, ’robin’, 1.4),
301 (’ape’, ’female’, 5, ’benji’, 1.1)
302)
303 # Insert rows into the animals table
304

305 eats = TABLE (’animalSpecies’, ’plantSpecies’)
306 # Create table eats, specifying field names
307

308 eats.INSERT (
309 (’horse’, ’gras’),
310 (’horse’, ’oats’),
311 (’human’, ’oats’),
312 (’human’, ’lettuce’),
313 (’human’, ’banana’),
314 (’ape’, ’banana’)
315)
316 # Insert rows into eats table
317

318 plants = TABLE (’species’, ’length’)
319 # Create plants table, specifying field names
320

321 plants.INSERT (
322 (’gras’, 0.3),
323 (’oats’, 0.5),
324 (’banana’, 0.2)
325)
326 # Insert rows in to plants table
327

328 primateFood = TABLE (’species’, ’kind’)
329 # Create primateFood table
330

331 primateFood.INSERT (
332 (’oats’, ’wild’),
333 (’banana’, ’wild’),
334 (’banana’, ’cultivated’)
335)
336 # Insert rows into primateFood table
337

338 adultsCursor = (
339 FROM (animals) .
340 WHERE (lambda r: r.species == ’human’ and r.age > 10) .
341 SELECT (lambda r: (r.gender, r.name, r.age)) .
342 ORDER_BY (lambda r: (r.name, r.age | DESC))
343)
344 # FROM, WHERE, SELECT and ORDER_BY are called one after another,
345 # according to the Call Chaining pattern
346

347 print (’\n’, adultsCursor)
348 # The string representation of the resulting Cursor is printed
349

350 menu = (
351 FROM (
352 animals (species = ’aSpecies’, length = ’animalLength’),

CHAPTER 6. DESIGN PATTERNS 52

353 eats,
354 plants (species = ’pSpecies’, length = ’plantLength’)
355) .
356 WHERE (lambda r: r.aSpecies == r.animalSpecies and r.plantSpecies == r.pSpecies) .
357 SELECT (lambda r: (r.name, r.animalSpecies, r.animalLength, r.plantSpecies, r.plantLength))
358)
359 # A full join (Google) is created, some field names of the
360 # animals and plants tables are replaced by aliases
361 # This prevents confusion with identical field names of the eats table
362 # The end product here is not a Cursor but a TABLE, since that is what SELECT returns
363

364 menuCursor = \
365 FROM (menu). \
366 ORDER_BY (lambda r: r.name)
367 # Now we have our Cursor
368

369 print (’\n’, menuCursor)
370 # The string representation of the resulting Cursor is printed
371

372 primateCursor = (
373 FROM (menu) .
374 WHERE (lambda r: (r.plantSpecies, ’cultivated’) in (
375 FROM (primateFood) .
376 SELECT (lambda r: (r.species, r.kind))
377)) .
378 ORDER_BY (lambda r: r.name)
379)
380 # This type of query is called a ’nested query’
381 # It uses information from the primateFood table to select rows from
382 # the menu table that was constructed earlier
383

384 print (’\n’, primateCursor)
385 # Print the result of the nested query

Listing 6.7: patterns/callChainingLiterate.py

Chapter 7

Python and performance: a wolf in sheeps

clothes

7.1 The C++ connection

Python programs can be very fast. I've written Python applications for real time 3D medical image processing
that run rings around their C++ predecessors. It's all a matter of using the right tools for the job. Python comes
with a set of easy to use but highly optimized datastructures and standard libraries written in C++, They are fast,
memory e�cient, safe and easy to use seamlessly from Python.

In addition to this, Python has become the lingua franca to use specialized high performance 3rd party libraries for
number crunching, neural nets, graphics and modelling. Let's enter the candy store.

7.2 Built-in datastructures and standard libraries

7.2.1 Tuples

7.2.2 Lists

7.2.3 Dictionaries

7.2.4 Sets

7.3 3rd party libraries

7.3.1 If Python doesn't o�er it, it ain't there at all

7.3.2 Numpy

7.3.3 Tensor�ow and Keras

7.3.4 OpenGL

7.3.5 Fenics/Dolphin

7.4 Ready for prime time

�//�

53

	Objects
	Introduction
	Your first program
	Specifying your own classes
	Indentation, capitals and the use of _

	Encapsulation
	Interfaces
	Modules
	Polymorphism

	A pinch of functional programming
	List comprehensions
	Transforming all elements of a list
	Selecting certain elements from a list
	Computing sum from a list
	Free functions and lambda expressions

	Inheritance
	Implementation inheritance
	Interface inheritance
	Inheriting from library classes

	Objects and the real world
	Object oriented modeling
	Pong, the object oriented way
	Step 1, analysis: Drawing up the domain model
	Step 2, design: Turning the domain model into a design model
	Step 3, programming: Working out program logic and laying the connection with Pyglet

	Design patterns
	The solution principles behind your source code
	The Observer pattern
	Example situation
	Solution principle
	Example code

	The Adapter pattern
	Example situation
	Solution principle
	Example code

	The Property pattern
	Example situation
	Solution principle
	Example code

	EXTRA The Call Chaining pattern
	Example situation
	Solution principle
	Example code

	Python and performance: a wolf in sheeps clothes
	The C++ connection
	Built-in datastructures and standard libraries
	Tuples
	Lists
	Dictionaries
	Sets

	3rd party libraries
	If Python doesn't offer it, it ain't there at all
	Numpy
	Tensorflow and Keras
	OpenGL
	Fenics/Dolphin

	Ready for prime time

